Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308743345> ?p ?o ?g. }
- W4308743345 endingPage "128598" @default.
- W4308743345 startingPage "128598" @default.
- W4308743345 abstract "An accurate prediction of sediment yield at the watershed scale is critical not only for sustainable watershed management but also for improving knowledge regarding the relationship between sediment yield and its determinant factors, which often rely on the varying model complexity. In this study, a modified sediment yield formula based on the modified universal soil loss equation (MUSLE) model was developed by introducing a channel factor into the original formula. The reliability of the proposed method was tested using data from 1,341 storm events in 38 watersheds and was applied to 256 storm events in five application watersheds using the optimized parameters. Results indicated that the proposed method is very accurate, as demonstrated by the Nash–Sutcliffe efficiency (NSE) values of 88.18 %, 85.72 %, and 85.51 % during calibration, validation, and application, respectively. The performance of the proposed model was superior to that of the original MUSLE model. Subsequently, the proposed method was used to predict sediment yield from the last five typical watersheds. This prediction utilized the parameters derived from the initial 38 watersheds; the peak discharge predicted by the modified Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS); and the runoff estimated by the modified Soil Conservation Service Curve Number (SCS-CN) method. Elevated NSE (61.88–81.42 %) and low root mean square error values (2.35–11.40 t ha−1) were calculated for the five watersheds. From the results, the proposed sediment yield model, combined with the modified SCS-CN method and CREAMS, was found to accurately predict the event-based sediment yield, peak discharge, and runoff in the Loess Plateau region under varying hydrological and geomorphic conditions." @default.
- W4308743345 created "2022-11-15" @default.
- W4308743345 creator A5005811223 @default.
- W4308743345 creator A5019056174 @default.
- W4308743345 creator A5040339014 @default.
- W4308743345 creator A5045665383 @default.
- W4308743345 creator A5066869863 @default.
- W4308743345 date "2022-11-01" @default.
- W4308743345 modified "2023-10-16" @default.
- W4308743345 title "An improved MUSLE model incorporating the estimated runoff and peak discharge predicted sediment yield at the watershed scale on the Chinese Loess Plateau" @default.
- W4308743345 cites W1924852740 @default.
- W4308743345 cites W1931550268 @default.
- W4308743345 cites W1977299740 @default.
- W4308743345 cites W1983886571 @default.
- W4308743345 cites W1996909972 @default.
- W4308743345 cites W2004169947 @default.
- W4308743345 cites W2006671790 @default.
- W4308743345 cites W2008944108 @default.
- W4308743345 cites W2012093596 @default.
- W4308743345 cites W2025797668 @default.
- W4308743345 cites W2033904036 @default.
- W4308743345 cites W2047371548 @default.
- W4308743345 cites W2052144069 @default.
- W4308743345 cites W2057833596 @default.
- W4308743345 cites W2062484087 @default.
- W4308743345 cites W2068565491 @default.
- W4308743345 cites W2071016654 @default.
- W4308743345 cites W2085363757 @default.
- W4308743345 cites W2087070363 @default.
- W4308743345 cites W2087256675 @default.
- W4308743345 cites W2107711388 @default.
- W4308743345 cites W2108765570 @default.
- W4308743345 cites W2120747881 @default.
- W4308743345 cites W2131246922 @default.
- W4308743345 cites W2131569511 @default.
- W4308743345 cites W2135181820 @default.
- W4308743345 cites W2139953545 @default.
- W4308743345 cites W2165066609 @default.
- W4308743345 cites W2594624308 @default.
- W4308743345 cites W2606963357 @default.
- W4308743345 cites W2889343865 @default.
- W4308743345 cites W2900011544 @default.
- W4308743345 cites W2950851751 @default.
- W4308743345 cites W3014953169 @default.
- W4308743345 cites W3021102104 @default.
- W4308743345 cites W3047673831 @default.
- W4308743345 cites W3094049574 @default.
- W4308743345 cites W3114307384 @default.
- W4308743345 cites W3203331644 @default.
- W4308743345 cites W42852333 @default.
- W4308743345 cites W4296767566 @default.
- W4308743345 doi "https://doi.org/10.1016/j.jhydrol.2022.128598" @default.
- W4308743345 hasPublicationYear "2022" @default.
- W4308743345 type Work @default.
- W4308743345 citedByCount "4" @default.
- W4308743345 countsByYear W43087433452022 @default.
- W4308743345 countsByYear W43087433452023 @default.
- W4308743345 crossrefType "journal-article" @default.
- W4308743345 hasAuthorship W4308743345A5005811223 @default.
- W4308743345 hasAuthorship W4308743345A5019056174 @default.
- W4308743345 hasAuthorship W4308743345A5040339014 @default.
- W4308743345 hasAuthorship W4308743345A5045665383 @default.
- W4308743345 hasAuthorship W4308743345A5066869863 @default.
- W4308743345 hasConcept C105795698 @default.
- W4308743345 hasConcept C109162521 @default.
- W4308743345 hasConcept C114793014 @default.
- W4308743345 hasConcept C118518473 @default.
- W4308743345 hasConcept C119857082 @default.
- W4308743345 hasConcept C121332964 @default.
- W4308743345 hasConcept C123157820 @default.
- W4308743345 hasConcept C126589126 @default.
- W4308743345 hasConcept C127313418 @default.
- W4308743345 hasConcept C150547873 @default.
- W4308743345 hasConcept C159390177 @default.
- W4308743345 hasConcept C165838908 @default.
- W4308743345 hasConcept C187320778 @default.
- W4308743345 hasConcept C18903297 @default.
- W4308743345 hasConcept C2777610965 @default.
- W4308743345 hasConcept C2778755073 @default.
- W4308743345 hasConcept C2816523 @default.
- W4308743345 hasConcept C2983671832 @default.
- W4308743345 hasConcept C33923547 @default.
- W4308743345 hasConcept C39432304 @default.
- W4308743345 hasConcept C41008148 @default.
- W4308743345 hasConcept C50477045 @default.
- W4308743345 hasConcept C62520636 @default.
- W4308743345 hasConcept C76886044 @default.
- W4308743345 hasConcept C86803240 @default.
- W4308743345 hasConceptScore W4308743345C105795698 @default.
- W4308743345 hasConceptScore W4308743345C109162521 @default.
- W4308743345 hasConceptScore W4308743345C114793014 @default.
- W4308743345 hasConceptScore W4308743345C118518473 @default.
- W4308743345 hasConceptScore W4308743345C119857082 @default.
- W4308743345 hasConceptScore W4308743345C121332964 @default.
- W4308743345 hasConceptScore W4308743345C123157820 @default.
- W4308743345 hasConceptScore W4308743345C126589126 @default.
- W4308743345 hasConceptScore W4308743345C127313418 @default.
- W4308743345 hasConceptScore W4308743345C150547873 @default.