Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308743553> ?p ?o ?g. }
- W4308743553 endingPage "119453" @default.
- W4308743553 startingPage "119453" @default.
- W4308743553 abstract "The analysis of the daily spatial patterns of near-surface Nitrogen dioxide (NO2) concentrations can assist decision makers mitigate this common air pollutant in urban areas. However, comparative analysis of NO2 estimates in different urban agglomerations of China is limited. In this study, a new linear mixed effect model (LME) with multi-source spatiotemporal data is proposed to estimate daily NO2 concentrations at high accuracy based on the land-use regression (LUR) model and Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) products. In addition, three models for NO2 concentration estimation were evaluated and compared in four Chinese urban agglomerations from 2018 to 2020, including the COVID-19 closed management period. Each model included a unique combination of methods and satellite NO2 products: ModelⅠ: LUR model with OMI products; Model Ⅱ: LUR model with TropOMI products; Model Ⅱ: LME model with TropOMI products. The results show that the LME model outperformed the LUR model in all four urban agglomerations as the average RMSE decreased by 16.09% due to the consideration of atmospheric dispersion random effects, and using TropOMI instead of OMI products can improve the accuracy. Based on our NO2 estimations, pollution hotspots were identified, and pollution anomalies during the COVID-19 period were explored for two periods; the lockdown and revenge pollution periods. The largest NO2 pollution difference between the hotspot and non-hotspot areas occurred in the second period, especially in the heavy industrial urban agglomerations." @default.
- W4308743553 created "2022-11-15" @default.
- W4308743553 creator A5011086264 @default.
- W4308743553 creator A5022283197 @default.
- W4308743553 creator A5051364953 @default.
- W4308743553 creator A5055340350 @default.
- W4308743553 creator A5056236904 @default.
- W4308743553 creator A5060697026 @default.
- W4308743553 creator A5089969477 @default.
- W4308743553 date "2023-01-01" @default.
- W4308743553 modified "2023-09-30" @default.
- W4308743553 title "Satellite-based estimates of daily NO2 exposure in urban agglomerations of China and application to spatio-temporal characteristics of hotspots" @default.
- W4308743553 cites W1540376644 @default.
- W4308743553 cites W1971356321 @default.
- W4308743553 cites W1980830298 @default.
- W4308743553 cites W2053785149 @default.
- W4308743553 cites W2093634559 @default.
- W4308743553 cites W2104500845 @default.
- W4308743553 cites W2114617479 @default.
- W4308743553 cites W2118442798 @default.
- W4308743553 cites W2126196940 @default.
- W4308743553 cites W2129437219 @default.
- W4308743553 cites W2145799889 @default.
- W4308743553 cites W2154589423 @default.
- W4308743553 cites W2158395027 @default.
- W4308743553 cites W2291282024 @default.
- W4308743553 cites W2330583268 @default.
- W4308743553 cites W2469422990 @default.
- W4308743553 cites W2564696446 @default.
- W4308743553 cites W2605745243 @default.
- W4308743553 cites W2791683671 @default.
- W4308743553 cites W2791847934 @default.
- W4308743553 cites W2792404378 @default.
- W4308743553 cites W2807833642 @default.
- W4308743553 cites W2809236957 @default.
- W4308743553 cites W2811009165 @default.
- W4308743553 cites W2883001520 @default.
- W4308743553 cites W2888584474 @default.
- W4308743553 cites W2889228028 @default.
- W4308743553 cites W2903440439 @default.
- W4308743553 cites W2904139739 @default.
- W4308743553 cites W2908418060 @default.
- W4308743553 cites W2921254207 @default.
- W4308743553 cites W2969758626 @default.
- W4308743553 cites W2981742527 @default.
- W4308743553 cites W2998223854 @default.
- W4308743553 cites W2998573632 @default.
- W4308743553 cites W3017741277 @default.
- W4308743553 cites W3022729362 @default.
- W4308743553 cites W3024739383 @default.
- W4308743553 cites W3025597559 @default.
- W4308743553 cites W3035712837 @default.
- W4308743553 cites W3041006286 @default.
- W4308743553 cites W3047366773 @default.
- W4308743553 cites W3080519004 @default.
- W4308743553 cites W3109916867 @default.
- W4308743553 cites W3123179474 @default.
- W4308743553 cites W3134856692 @default.
- W4308743553 cites W3138871868 @default.
- W4308743553 cites W3147014757 @default.
- W4308743553 cites W3171040803 @default.
- W4308743553 cites W3185297562 @default.
- W4308743553 cites W3200651430 @default.
- W4308743553 cites W4200034276 @default.
- W4308743553 cites W4213288986 @default.
- W4308743553 cites W4221079601 @default.
- W4308743553 cites W4281621488 @default.
- W4308743553 cites W4283319441 @default.
- W4308743553 cites W845424685 @default.
- W4308743553 doi "https://doi.org/10.1016/j.atmosenv.2022.119453" @default.
- W4308743553 hasPublicationYear "2023" @default.
- W4308743553 type Work @default.
- W4308743553 citedByCount "1" @default.
- W4308743553 countsByYear W43087435532023 @default.
- W4308743553 crossrefType "journal-article" @default.
- W4308743553 hasAuthorship W4308743553A5011086264 @default.
- W4308743553 hasAuthorship W4308743553A5022283197 @default.
- W4308743553 hasAuthorship W4308743553A5051364953 @default.
- W4308743553 hasAuthorship W4308743553A5055340350 @default.
- W4308743553 hasAuthorship W4308743553A5056236904 @default.
- W4308743553 hasAuthorship W4308743553A5060697026 @default.
- W4308743553 hasAuthorship W4308743553A5089969477 @default.
- W4308743553 hasConcept C127313418 @default.
- W4308743553 hasConcept C127413603 @default.
- W4308743553 hasConcept C146481406 @default.
- W4308743553 hasConcept C146978453 @default.
- W4308743553 hasConcept C153294291 @default.
- W4308743553 hasConcept C154611951 @default.
- W4308743553 hasConcept C166957645 @default.
- W4308743553 hasConcept C178790620 @default.
- W4308743553 hasConcept C185592680 @default.
- W4308743553 hasConcept C18903297 @default.
- W4308743553 hasConcept C191935318 @default.
- W4308743553 hasConcept C19269812 @default.
- W4308743553 hasConcept C205649164 @default.
- W4308743553 hasConcept C2779118152 @default.
- W4308743553 hasConcept C2779345167 @default.
- W4308743553 hasConcept C39432304 @default.