Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308748046> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4308748046 endingPage "649" @default.
- W4308748046 startingPage "639" @default.
- W4308748046 abstract "AbstractPlant and crop cultivation rates are steadily growing over the world as human and animal demands rise. Plant disease, on the other hand, is a persistent problem for smallholder farmers, jeopardizing their livelihoods and food security. Using technologies like image processing and deep learning, we can successfully detect plant diseases in their early stages. The entire process of putting this ailment diagnosis model into practice is described in detail throughout the paper, beginning with the collection of images to create a database. Deep learning frameworks (such as convolutional neural networks (CNNs)) have made significant progress in image processing fine-tuning to match a database of a plant’s leaves generated independently for different plant diseases. The web application for the developed model, which can recognize plant illnesses, is now available. A collection of leaf photographs acquired in a controlled situation is used to train and evaluate the model. Validation data shows that the suggested technique is 86 percent accurate.KeywordsConvolutional neural networksCultivationDeep learningClassification" @default.
- W4308748046 created "2022-11-15" @default.
- W4308748046 creator A5003102529 @default.
- W4308748046 creator A5003265392 @default.
- W4308748046 creator A5037388300 @default.
- W4308748046 creator A5040241791 @default.
- W4308748046 creator A5074721978 @default.
- W4308748046 creator A5090052114 @default.
- W4308748046 date "2022-11-10" @default.
- W4308748046 modified "2023-10-16" @default.
- W4308748046 title "A Hybrid Approach Using Convolutional Neural Network Model and Image Processing for Crop Disease Detection" @default.
- W4308748046 cites W2473156356 @default.
- W4308748046 cites W2808139070 @default.
- W4308748046 cites W2917578266 @default.
- W4308748046 cites W2945461009 @default.
- W4308748046 cites W2997809778 @default.
- W4308748046 cites W3016522735 @default.
- W4308748046 cites W3047000905 @default.
- W4308748046 cites W3118346868 @default.
- W4308748046 cites W3172544793 @default.
- W4308748046 doi "https://doi.org/10.1007/978-981-19-3148-2_56" @default.
- W4308748046 hasPublicationYear "2022" @default.
- W4308748046 type Work @default.
- W4308748046 citedByCount "0" @default.
- W4308748046 crossrefType "book-chapter" @default.
- W4308748046 hasAuthorship W4308748046A5003102529 @default.
- W4308748046 hasAuthorship W4308748046A5003265392 @default.
- W4308748046 hasAuthorship W4308748046A5037388300 @default.
- W4308748046 hasAuthorship W4308748046A5040241791 @default.
- W4308748046 hasAuthorship W4308748046A5074721978 @default.
- W4308748046 hasAuthorship W4308748046A5090052114 @default.
- W4308748046 hasConcept C108583219 @default.
- W4308748046 hasConcept C111919701 @default.
- W4308748046 hasConcept C115961682 @default.
- W4308748046 hasConcept C119857082 @default.
- W4308748046 hasConcept C127413603 @default.
- W4308748046 hasConcept C150903083 @default.
- W4308748046 hasConcept C154945302 @default.
- W4308748046 hasConcept C3019235130 @default.
- W4308748046 hasConcept C41008148 @default.
- W4308748046 hasConcept C50644808 @default.
- W4308748046 hasConcept C81363708 @default.
- W4308748046 hasConcept C86803240 @default.
- W4308748046 hasConcept C88463610 @default.
- W4308748046 hasConcept C9417928 @default.
- W4308748046 hasConcept C98045186 @default.
- W4308748046 hasConceptScore W4308748046C108583219 @default.
- W4308748046 hasConceptScore W4308748046C111919701 @default.
- W4308748046 hasConceptScore W4308748046C115961682 @default.
- W4308748046 hasConceptScore W4308748046C119857082 @default.
- W4308748046 hasConceptScore W4308748046C127413603 @default.
- W4308748046 hasConceptScore W4308748046C150903083 @default.
- W4308748046 hasConceptScore W4308748046C154945302 @default.
- W4308748046 hasConceptScore W4308748046C3019235130 @default.
- W4308748046 hasConceptScore W4308748046C41008148 @default.
- W4308748046 hasConceptScore W4308748046C50644808 @default.
- W4308748046 hasConceptScore W4308748046C81363708 @default.
- W4308748046 hasConceptScore W4308748046C86803240 @default.
- W4308748046 hasConceptScore W4308748046C88463610 @default.
- W4308748046 hasConceptScore W4308748046C9417928 @default.
- W4308748046 hasConceptScore W4308748046C98045186 @default.
- W4308748046 hasLocation W43087480461 @default.
- W4308748046 hasOpenAccess W4308748046 @default.
- W4308748046 hasPrimaryLocation W43087480461 @default.
- W4308748046 hasRelatedWork W2337926734 @default.
- W4308748046 hasRelatedWork W2470368200 @default.
- W4308748046 hasRelatedWork W2799614062 @default.
- W4308748046 hasRelatedWork W2950208422 @default.
- W4308748046 hasRelatedWork W3021430260 @default.
- W4308748046 hasRelatedWork W3136076031 @default.
- W4308748046 hasRelatedWork W3173182854 @default.
- W4308748046 hasRelatedWork W3189091156 @default.
- W4308748046 hasRelatedWork W4308353688 @default.
- W4308748046 hasRelatedWork W4311257506 @default.
- W4308748046 isParatext "false" @default.
- W4308748046 isRetracted "false" @default.
- W4308748046 workType "book-chapter" @default.