Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308748520> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4308748520 endingPage "295" @default.
- W4308748520 startingPage "283" @default.
- W4308748520 abstract "In developing countries, healthcare monitoring is a crucial component for determining the well-being of the patient, and at the same time, it is highly effective for managing the hospital resources which are limited in developing countries like India. With the increase in amount of digital data available for healthcare sector and the development of tools for data analysis, a new era of medical treatment could be arrived at with stringent methods of checking the efficacy of medicines and devising statistically valid tests that would authoritatively show the scope of medical treatment. This paper proposes a conceptual healthcare data model based on data mining techniques. The predictions have been made based on NHRM and RCH dataset, and three data mining tools, i.e., IBM SPSS Modeler, RapidMiner, and Weka, are used for determining the performance of the proposed model. Different classifiers, namely CHAID, random forest, K-nearest neighbor, logistic regression, decision tree, Naïve Bayes, and C5.0, are used for predicting the stay of pregnant ladies in the hospital. A detailed analysis of these classifiers on the data mining toolset is also presented in this paper." @default.
- W4308748520 created "2022-11-15" @default.
- W4308748520 creator A5002893934 @default.
- W4308748520 creator A5024172808 @default.
- W4308748520 date "2022-11-10" @default.
- W4308748520 modified "2023-10-18" @default.
- W4308748520 title "Using AI-Based Approaches in Health Care for Predicting Health Issues in Pregnant Women" @default.
- W4308748520 cites W1556158451 @default.
- W4308748520 cites W1620624864 @default.
- W4308748520 cites W1997134656 @default.
- W4308748520 cites W2062580623 @default.
- W4308748520 cites W2100406636 @default.
- W4308748520 cites W2129065999 @default.
- W4308748520 cites W2130452318 @default.
- W4308748520 cites W2141441962 @default.
- W4308748520 cites W2147273498 @default.
- W4308748520 cites W2153028052 @default.
- W4308748520 cites W2396219326 @default.
- W4308748520 cites W2463638724 @default.
- W4308748520 cites W4213378795 @default.
- W4308748520 doi "https://doi.org/10.1007/978-981-19-3148-2_24" @default.
- W4308748520 hasPublicationYear "2022" @default.
- W4308748520 type Work @default.
- W4308748520 citedByCount "0" @default.
- W4308748520 crossrefType "book-chapter" @default.
- W4308748520 hasAuthorship W4308748520A5002893934 @default.
- W4308748520 hasAuthorship W4308748520A5024172808 @default.
- W4308748520 hasConcept C119857082 @default.
- W4308748520 hasConcept C12267149 @default.
- W4308748520 hasConcept C124101348 @default.
- W4308748520 hasConcept C151956035 @default.
- W4308748520 hasConcept C154945302 @default.
- W4308748520 hasConcept C16023879 @default.
- W4308748520 hasConcept C160735492 @default.
- W4308748520 hasConcept C162324750 @default.
- W4308748520 hasConcept C169258074 @default.
- W4308748520 hasConcept C171250308 @default.
- W4308748520 hasConcept C192562407 @default.
- W4308748520 hasConcept C199360897 @default.
- W4308748520 hasConcept C2522767166 @default.
- W4308748520 hasConcept C2778012447 @default.
- W4308748520 hasConcept C41008148 @default.
- W4308748520 hasConcept C50522688 @default.
- W4308748520 hasConcept C52001869 @default.
- W4308748520 hasConcept C70388272 @default.
- W4308748520 hasConcept C84525736 @default.
- W4308748520 hasConceptScore W4308748520C119857082 @default.
- W4308748520 hasConceptScore W4308748520C12267149 @default.
- W4308748520 hasConceptScore W4308748520C124101348 @default.
- W4308748520 hasConceptScore W4308748520C151956035 @default.
- W4308748520 hasConceptScore W4308748520C154945302 @default.
- W4308748520 hasConceptScore W4308748520C16023879 @default.
- W4308748520 hasConceptScore W4308748520C160735492 @default.
- W4308748520 hasConceptScore W4308748520C162324750 @default.
- W4308748520 hasConceptScore W4308748520C169258074 @default.
- W4308748520 hasConceptScore W4308748520C171250308 @default.
- W4308748520 hasConceptScore W4308748520C192562407 @default.
- W4308748520 hasConceptScore W4308748520C199360897 @default.
- W4308748520 hasConceptScore W4308748520C2522767166 @default.
- W4308748520 hasConceptScore W4308748520C2778012447 @default.
- W4308748520 hasConceptScore W4308748520C41008148 @default.
- W4308748520 hasConceptScore W4308748520C50522688 @default.
- W4308748520 hasConceptScore W4308748520C52001869 @default.
- W4308748520 hasConceptScore W4308748520C70388272 @default.
- W4308748520 hasConceptScore W4308748520C84525736 @default.
- W4308748520 hasLocation W43087485201 @default.
- W4308748520 hasOpenAccess W4308748520 @default.
- W4308748520 hasPrimaryLocation W43087485201 @default.
- W4308748520 hasRelatedWork W3122100524 @default.
- W4308748520 hasRelatedWork W3152503015 @default.
- W4308748520 hasRelatedWork W3210877509 @default.
- W4308748520 hasRelatedWork W4200057378 @default.
- W4308748520 hasRelatedWork W4205958290 @default.
- W4308748520 hasRelatedWork W4249746146 @default.
- W4308748520 hasRelatedWork W4281846282 @default.
- W4308748520 hasRelatedWork W4283016678 @default.
- W4308748520 hasRelatedWork W4293069612 @default.
- W4308748520 hasRelatedWork W4316082230 @default.
- W4308748520 isParatext "false" @default.
- W4308748520 isRetracted "false" @default.
- W4308748520 workType "book-chapter" @default.