Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308755669> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4308755669 abstract "We study the SIRS process, a continuous-time Markov chain modeling the spread of infections on graphs. In this model, vertices are either susceptible, infected, or recovered. Each infected vertex becomes recovered at rate 1 and infects each of its susceptible neighbors independently at rate $lambda$, and each recovered vertex becomes susceptible at a rate $varrho$, which we assume to be independent of the graph size. A central quantity of the SIRS process is the time until no vertex is infected, known as the survival time. Surprisingly though, rigorous theoretical results exist only for the related SIS model so far. We address this imbalance by conducting theoretical analyses of the SIRS process via their expansion properties. We prove that the expected survival time of the SIRS process on stars is at most polynomial in the graph size for any value of $lambda$. This behavior is fundamentally different from the SIS process, where the expected survival time is exponential already for small infection rates. Our main result is an exponential lower bound of the expected survival time of the SIRS process on expander graphs. Specifically, we show that on expander graphs $G$ with $n$ vertices, degree close to $d$, and sufficiently small spectral expansion, the SIRS process has expected survival time at least exponential in $n$ when $lambda geq c/d$ for a constant $c > 1$. Previous results on the SIS process show that this bound is almost tight. Additionally, our result holds even if $G$ is a subgraph. Notably, our result implies an almost-tight threshold for Erdos-R'enyi graphs and a regime of exponential survival time for hyperbolic random graphs. The proof of our main result draws inspiration from Lyapunov functions used in mean-field theory to devise a two-dimensional potential function and applying a negative-drift theorem to show that the expected survival time is exponential." @default.
- W4308755669 created "2022-11-15" @default.
- W4308755669 creator A5004370380 @default.
- W4308755669 creator A5015252882 @default.
- W4308755669 creator A5053395018 @default.
- W4308755669 creator A5056585957 @default.
- W4308755669 creator A5077389210 @default.
- W4308755669 date "2022-05-05" @default.
- W4308755669 modified "2023-10-18" @default.
- W4308755669 title "Analysis of the survival time of the SIRS process via expansion" @default.
- W4308755669 doi "https://doi.org/10.48550/arxiv.2205.02653" @default.
- W4308755669 hasPublicationYear "2022" @default.
- W4308755669 type Work @default.
- W4308755669 citedByCount "0" @default.
- W4308755669 crossrefType "posted-content" @default.
- W4308755669 hasAuthorship W4308755669A5004370380 @default.
- W4308755669 hasAuthorship W4308755669A5015252882 @default.
- W4308755669 hasAuthorship W4308755669A5053395018 @default.
- W4308755669 hasAuthorship W4308755669A5056585957 @default.
- W4308755669 hasAuthorship W4308755669A5077389210 @default.
- W4308755669 hasBestOaLocation W43087556691 @default.
- W4308755669 hasConcept C114614502 @default.
- W4308755669 hasConcept C118615104 @default.
- W4308755669 hasConcept C120665830 @default.
- W4308755669 hasConcept C121332964 @default.
- W4308755669 hasConcept C132525143 @default.
- W4308755669 hasConcept C134306372 @default.
- W4308755669 hasConcept C151376022 @default.
- W4308755669 hasConcept C154547637 @default.
- W4308755669 hasConcept C2778113609 @default.
- W4308755669 hasConcept C33923547 @default.
- W4308755669 hasConcept C77553402 @default.
- W4308755669 hasConcept C80899671 @default.
- W4308755669 hasConceptScore W4308755669C114614502 @default.
- W4308755669 hasConceptScore W4308755669C118615104 @default.
- W4308755669 hasConceptScore W4308755669C120665830 @default.
- W4308755669 hasConceptScore W4308755669C121332964 @default.
- W4308755669 hasConceptScore W4308755669C132525143 @default.
- W4308755669 hasConceptScore W4308755669C134306372 @default.
- W4308755669 hasConceptScore W4308755669C151376022 @default.
- W4308755669 hasConceptScore W4308755669C154547637 @default.
- W4308755669 hasConceptScore W4308755669C2778113609 @default.
- W4308755669 hasConceptScore W4308755669C33923547 @default.
- W4308755669 hasConceptScore W4308755669C77553402 @default.
- W4308755669 hasConceptScore W4308755669C80899671 @default.
- W4308755669 hasLocation W43087556691 @default.
- W4308755669 hasOpenAccess W4308755669 @default.
- W4308755669 hasPrimaryLocation W43087556691 @default.
- W4308755669 hasRelatedWork W1578920090 @default.
- W4308755669 hasRelatedWork W1746482425 @default.
- W4308755669 hasRelatedWork W1963961477 @default.
- W4308755669 hasRelatedWork W2059680011 @default.
- W4308755669 hasRelatedWork W2091040339 @default.
- W4308755669 hasRelatedWork W2171385678 @default.
- W4308755669 hasRelatedWork W2260035625 @default.
- W4308755669 hasRelatedWork W2374778222 @default.
- W4308755669 hasRelatedWork W2383129606 @default.
- W4308755669 hasRelatedWork W4291863732 @default.
- W4308755669 isParatext "false" @default.
- W4308755669 isRetracted "false" @default.
- W4308755669 workType "article" @default.