Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308757313> ?p ?o ?g. }
- W4308757313 endingPage "401" @default.
- W4308757313 startingPage "401" @default.
- W4308757313 abstract "Applications of deep-learning models in machine visions for crop/weed identification have remarkably upgraded the authenticity of precise weed management. However, compelling data are required to obtain the desired result from this highly data-driven operation. This study aims to curtail the effort needed to prepare very large image datasets by creating artificial images of maize (Zea mays) and four common weeds (i.e., Charlock, Fat Hen, Shepherd’s Purse, and small-flowered Cranesbill) through conditional Generative Adversarial Networks (cGANs). The fidelity of these synthetic images was tested through t-distributed stochastic neighbor embedding (t-SNE) visualization plots of real and artificial images of each class. The reliability of this method as a data augmentation technique was validated through classification results based on the transfer learning of a pre-defined convolutional neural network (CNN) architecture—the AlexNet; the feature extraction method came from the deepest pooling layer of the same network. Machine learning models based on a support vector machine (SVM) and linear discriminant analysis (LDA) were trained using these feature vectors. The F1 scores of the transfer learning model increased from 0.97 to 0.99, when additionally supported by an artificial dataset. Similarly, in the case of the feature extraction technique, the classification F1-scores increased from 0.93 to 0.96 for SVM and from 0.94 to 0.96 for the LDA model. The results show that image augmentation using generative adversarial networks (GANs) can improve the performance of crop/weed classification models with the added advantage of reduced time and manpower. Furthermore, it has demonstrated that generative networks could be a great tool for deep-learning applications in agriculture." @default.
- W4308757313 created "2022-11-15" @default.
- W4308757313 creator A5014570870 @default.
- W4308757313 creator A5016196657 @default.
- W4308757313 creator A5026358733 @default.
- W4308757313 creator A5062565472 @default.
- W4308757313 creator A5076766601 @default.
- W4308757313 creator A5077643113 @default.
- W4308757313 date "2022-10-30" @default.
- W4308757313 modified "2023-10-15" @default.
- W4308757313 title "Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed Classification Models for Precision Agriculture Applications" @default.
- W4308757313 cites W1997395865 @default.
- W4308757313 cites W2031138951 @default.
- W4308757313 cites W2046649434 @default.
- W4308757313 cites W2097117768 @default.
- W4308757313 cites W2101869354 @default.
- W4308757313 cites W2108598243 @default.
- W4308757313 cites W2117539524 @default.
- W4308757313 cites W2155423555 @default.
- W4308757313 cites W2165698076 @default.
- W4308757313 cites W2254106841 @default.
- W4308757313 cites W2286091602 @default.
- W4308757313 cites W2295576109 @default.
- W4308757313 cites W2339754110 @default.
- W4308757313 cites W2411260421 @default.
- W4308757313 cites W2534264203 @default.
- W4308757313 cites W2548921829 @default.
- W4308757313 cites W2618530766 @default.
- W4308757313 cites W2757153082 @default.
- W4308757313 cites W2795016359 @default.
- W4308757313 cites W2869138134 @default.
- W4308757313 cites W2883454019 @default.
- W4308757313 cites W2885770726 @default.
- W4308757313 cites W2889730635 @default.
- W4308757313 cites W2913227116 @default.
- W4308757313 cites W2915594101 @default.
- W4308757313 cites W2949257576 @default.
- W4308757313 cites W2962957157 @default.
- W4308757313 cites W2963073614 @default.
- W4308757313 cites W2963820222 @default.
- W4308757313 cites W2963942586 @default.
- W4308757313 cites W2974769261 @default.
- W4308757313 cites W3004103673 @default.
- W4308757313 cites W3008369512 @default.
- W4308757313 cites W3010345596 @default.
- W4308757313 cites W3011886372 @default.
- W4308757313 cites W3015562698 @default.
- W4308757313 cites W3030649873 @default.
- W4308757313 cites W3040126274 @default.
- W4308757313 cites W3083473462 @default.
- W4308757313 cites W3083926560 @default.
- W4308757313 cites W3086635719 @default.
- W4308757313 cites W3119341740 @default.
- W4308757313 cites W3128873393 @default.
- W4308757313 cites W3134207465 @default.
- W4308757313 cites W3141798104 @default.
- W4308757313 cites W3158527823 @default.
- W4308757313 cites W3160658661 @default.
- W4308757313 cites W3198134510 @default.
- W4308757313 cites W3205617754 @default.
- W4308757313 cites W3209067591 @default.
- W4308757313 cites W4210688119 @default.
- W4308757313 cites W4212809330 @default.
- W4308757313 cites W4224254398 @default.
- W4308757313 cites W4281744602 @default.
- W4308757313 cites W4282839741 @default.
- W4308757313 cites W4282983944 @default.
- W4308757313 cites W4283274474 @default.
- W4308757313 cites W4283751478 @default.
- W4308757313 cites W4285590261 @default.
- W4308757313 cites W4289260947 @default.
- W4308757313 cites W4289528199 @default.
- W4308757313 cites W4292323882 @default.
- W4308757313 cites W4296744480 @default.
- W4308757313 cites W4297221745 @default.
- W4308757313 cites W4297536385 @default.
- W4308757313 cites W4297923099 @default.
- W4308757313 cites W4308764412 @default.
- W4308757313 doi "https://doi.org/10.3390/a15110401" @default.
- W4308757313 hasPublicationYear "2022" @default.
- W4308757313 type Work @default.
- W4308757313 citedByCount "13" @default.
- W4308757313 countsByYear W43087573132022 @default.
- W4308757313 countsByYear W43087573132023 @default.
- W4308757313 crossrefType "journal-article" @default.
- W4308757313 hasAuthorship W4308757313A5014570870 @default.
- W4308757313 hasAuthorship W4308757313A5016196657 @default.
- W4308757313 hasAuthorship W4308757313A5026358733 @default.
- W4308757313 hasAuthorship W4308757313A5062565472 @default.
- W4308757313 hasAuthorship W4308757313A5076766601 @default.
- W4308757313 hasAuthorship W4308757313A5077643113 @default.
- W4308757313 hasBestOaLocation W43087573131 @default.
- W4308757313 hasConcept C108583219 @default.
- W4308757313 hasConcept C115961682 @default.
- W4308757313 hasConcept C119857082 @default.
- W4308757313 hasConcept C12267149 @default.
- W4308757313 hasConcept C138885662 @default.
- W4308757313 hasConcept C150899416 @default.