Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308766051> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4308766051 endingPage "1589" @default.
- W4308766051 startingPage "1589" @default.
- W4308766051 abstract "An effective fault diagnosis method of bearing is the key to predictive maintenance of modern industrial equipment. With the single use of equipment failure mechanism or operation of data, it is hard to resolve multiple complex variable working conditions, multiple types of fault and equipment malfunctions and failures related to knowledge and data. In order to solve these problems, a fault diagnosis method based on the fusion of deep learning with a knowledge graph is proposed in this paper. Firstly, the knowledge rules of bearing data is used for entity extraction. Next, the multiscale optimized convolutional neural network (MOCNN) proposed in this paper is used for fault classification to achieve relationship extraction. Finally, the fault diagnosis graph of the bearing is constructed for fault-assisted decision-making as well as the detailed display of fault information. According to experiment analysis, the fault diagnosis model based on MOCNN proposed in this paper, which integrates the end-to-end convolutional neural network and the attention mechanism, still achieves an accuracy of 97.86% under the data set of 160 types of faults. Compared with the deep learning models such as Resnet and Inception in the noise environment of multiple working conditions and variable working conditions, the model proposed in this paper not only shows a faster convergence speed and stable performance, but also a higher accuracy in evaluation indicators, which is beneficial to practical use." @default.
- W4308766051 created "2022-11-15" @default.
- W4308766051 creator A5014910605 @default.
- W4308766051 creator A5015230090 @default.
- W4308766051 creator A5022330556 @default.
- W4308766051 creator A5073450436 @default.
- W4308766051 date "2022-11-02" @default.
- W4308766051 modified "2023-10-01" @default.
- W4308766051 title "Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph" @default.
- W4308766051 cites W2473294140 @default.
- W4308766051 cites W2618530766 @default.
- W4308766051 cites W2762355244 @default.
- W4308766051 cites W2799441468 @default.
- W4308766051 cites W2803978172 @default.
- W4308766051 cites W2884001105 @default.
- W4308766051 cites W2909430258 @default.
- W4308766051 cites W2957568672 @default.
- W4308766051 cites W2978144367 @default.
- W4308766051 cites W2990308728 @default.
- W4308766051 cites W2996629306 @default.
- W4308766051 cites W2998506103 @default.
- W4308766051 cites W3049010479 @default.
- W4308766051 cites W3086182925 @default.
- W4308766051 cites W3153655623 @default.
- W4308766051 cites W3204767606 @default.
- W4308766051 doi "https://doi.org/10.3390/e24111589" @default.
- W4308766051 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359679" @default.
- W4308766051 hasPublicationYear "2022" @default.
- W4308766051 type Work @default.
- W4308766051 citedByCount "3" @default.
- W4308766051 countsByYear W43087660512022 @default.
- W4308766051 countsByYear W43087660512023 @default.
- W4308766051 crossrefType "journal-article" @default.
- W4308766051 hasAuthorship W4308766051A5014910605 @default.
- W4308766051 hasAuthorship W4308766051A5015230090 @default.
- W4308766051 hasAuthorship W4308766051A5022330556 @default.
- W4308766051 hasAuthorship W4308766051A5073450436 @default.
- W4308766051 hasBestOaLocation W43087660511 @default.
- W4308766051 hasConcept C119857082 @default.
- W4308766051 hasConcept C124101348 @default.
- W4308766051 hasConcept C127313418 @default.
- W4308766051 hasConcept C132525143 @default.
- W4308766051 hasConcept C153180895 @default.
- W4308766051 hasConcept C154945302 @default.
- W4308766051 hasConcept C165205528 @default.
- W4308766051 hasConcept C175551986 @default.
- W4308766051 hasConcept C41008148 @default.
- W4308766051 hasConcept C50644808 @default.
- W4308766051 hasConcept C80444323 @default.
- W4308766051 hasConcept C81363708 @default.
- W4308766051 hasConceptScore W4308766051C119857082 @default.
- W4308766051 hasConceptScore W4308766051C124101348 @default.
- W4308766051 hasConceptScore W4308766051C127313418 @default.
- W4308766051 hasConceptScore W4308766051C132525143 @default.
- W4308766051 hasConceptScore W4308766051C153180895 @default.
- W4308766051 hasConceptScore W4308766051C154945302 @default.
- W4308766051 hasConceptScore W4308766051C165205528 @default.
- W4308766051 hasConceptScore W4308766051C175551986 @default.
- W4308766051 hasConceptScore W4308766051C41008148 @default.
- W4308766051 hasConceptScore W4308766051C50644808 @default.
- W4308766051 hasConceptScore W4308766051C80444323 @default.
- W4308766051 hasConceptScore W4308766051C81363708 @default.
- W4308766051 hasIssue "11" @default.
- W4308766051 hasLocation W43087660511 @default.
- W4308766051 hasLocation W43087660512 @default.
- W4308766051 hasLocation W43087660513 @default.
- W4308766051 hasOpenAccess W4308766051 @default.
- W4308766051 hasPrimaryLocation W43087660511 @default.
- W4308766051 hasRelatedWork W2767651786 @default.
- W4308766051 hasRelatedWork W2912288872 @default.
- W4308766051 hasRelatedWork W2961085424 @default.
- W4308766051 hasRelatedWork W3016958897 @default.
- W4308766051 hasRelatedWork W3021430260 @default.
- W4308766051 hasRelatedWork W3027997911 @default.
- W4308766051 hasRelatedWork W3181746755 @default.
- W4308766051 hasRelatedWork W4287776258 @default.
- W4308766051 hasRelatedWork W4306674287 @default.
- W4308766051 hasRelatedWork W564581980 @default.
- W4308766051 hasVolume "24" @default.
- W4308766051 isParatext "false" @default.
- W4308766051 isRetracted "false" @default.
- W4308766051 workType "article" @default.