Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308767526> ?p ?o ?g. }
- W4308767526 endingPage "3872" @default.
- W4308767526 startingPage "3872" @default.
- W4308767526 abstract "Nanofluids have gained prominence due to their superior thermo-physical properties. The current paper deals with MHD nanofluid flow over a non-linear stretchable surface of varying thickness in the presence of an electric field. We investigated the effects of nanometer-sized copper (Cu) particles in water (base fluid) as a nanofluid, as well as non-linear thermal radiation, variable fluid viscosity, Joule heating, viscous dissipation, and non-uniform heat flux. The current study’s aim is influenced by the immense applications in industry and machine building. It has been observed that linear stretching sheets have been extensively used in heat transfer research. Moreover, no effort has been made yet to model a non-linear stretching sheet with variable thickness. Furthermore, the effects of electromagnetohydrodynamics (EMHD) boundary-layer flow of a nanofluid with the cumulative impact of thermal radiation, variable viscosity, viscous dissipation, Joule heating, and variable heat flux have been investigated. Sheets with variable thicknesses are practically significant in real-life applications and are being used in metallurgical engineering, appliance structures and patterns, atomic reactor mechanization and paper production. To investigate the physical features of the problem, we first examined the model and identified all the physical properties of the problem. This problem has been formulated using basic laws and governing equations. The partial differential equations (PDEs) that govern the flow are converted into a system of non-dimensional ordinary differential equations (ODE’s), using appropriate transformations. The Adam–Bashforth predictor-corrector technique and Mathematica software are utilized to numerically solve the resulting non-dimensionalized system. The interaction of various developing parameters with the flow is described graphically for temperature and velocity profiles. It is concluded that the velocity of nanoparticles declines as the intensity of the magnetic field increases. However, the temperature of the nanomaterials rises, as increasing the values of the electric field also increases the velocity distribution. The radiation parameter enhances the temperature field. The temperature of the fluid increases the occurrence of space- and time-dependent parameters for heat generation and absorption and radiation parameters." @default.
- W4308767526 created "2022-11-15" @default.
- W4308767526 creator A5014356417 @default.
- W4308767526 creator A5025752744 @default.
- W4308767526 creator A5033587058 @default.
- W4308767526 creator A5041360699 @default.
- W4308767526 date "2022-11-02" @default.
- W4308767526 modified "2023-09-25" @default.
- W4308767526 title "EMHD Nanofluid Flow with Radiation and Variable Heat Flux Effects along a Slandering Stretching Sheet" @default.
- W4308767526 cites W1974831709 @default.
- W4308767526 cites W1984715812 @default.
- W4308767526 cites W2003951568 @default.
- W4308767526 cites W2005089029 @default.
- W4308767526 cites W2015676963 @default.
- W4308767526 cites W2017311806 @default.
- W4308767526 cites W2029292833 @default.
- W4308767526 cites W2029759881 @default.
- W4308767526 cites W2030190859 @default.
- W4308767526 cites W2032088208 @default.
- W4308767526 cites W2045956884 @default.
- W4308767526 cites W2049973561 @default.
- W4308767526 cites W2055582342 @default.
- W4308767526 cites W2058135277 @default.
- W4308767526 cites W2065471051 @default.
- W4308767526 cites W2092139299 @default.
- W4308767526 cites W2103687859 @default.
- W4308767526 cites W2142418682 @default.
- W4308767526 cites W2237464424 @default.
- W4308767526 cites W2460331617 @default.
- W4308767526 cites W2477868913 @default.
- W4308767526 cites W2510038573 @default.
- W4308767526 cites W2598143330 @default.
- W4308767526 cites W2728817816 @default.
- W4308767526 cites W2750059563 @default.
- W4308767526 cites W2751031705 @default.
- W4308767526 cites W2780859681 @default.
- W4308767526 cites W2791735495 @default.
- W4308767526 cites W2793025649 @default.
- W4308767526 cites W2799370796 @default.
- W4308767526 cites W2809437300 @default.
- W4308767526 cites W2884003907 @default.
- W4308767526 cites W2884109336 @default.
- W4308767526 cites W2915761525 @default.
- W4308767526 cites W2920350101 @default.
- W4308767526 cites W2947207264 @default.
- W4308767526 cites W3036192603 @default.
- W4308767526 cites W3042072111 @default.
- W4308767526 cites W3095533669 @default.
- W4308767526 cites W3116088050 @default.
- W4308767526 cites W3143543244 @default.
- W4308767526 cites W3165297681 @default.
- W4308767526 cites W3173169146 @default.
- W4308767526 cites W3175183179 @default.
- W4308767526 cites W3176418081 @default.
- W4308767526 cites W3180190769 @default.
- W4308767526 cites W3200243116 @default.
- W4308767526 cites W3200848108 @default.
- W4308767526 cites W3206771758 @default.
- W4308767526 cites W3207719547 @default.
- W4308767526 cites W4200063879 @default.
- W4308767526 cites W4210787640 @default.
- W4308767526 cites W4280651167 @default.
- W4308767526 cites W4284958874 @default.
- W4308767526 doi "https://doi.org/10.3390/nano12213872" @default.
- W4308767526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36364648" @default.
- W4308767526 hasPublicationYear "2022" @default.
- W4308767526 type Work @default.
- W4308767526 citedByCount "8" @default.
- W4308767526 countsByYear W43087675262022 @default.
- W4308767526 countsByYear W43087675262023 @default.
- W4308767526 crossrefType "journal-article" @default.
- W4308767526 hasAuthorship W4308767526A5014356417 @default.
- W4308767526 hasAuthorship W4308767526A5025752744 @default.
- W4308767526 hasAuthorship W4308767526A5033587058 @default.
- W4308767526 hasAuthorship W4308767526A5041360699 @default.
- W4308767526 hasBestOaLocation W43087675261 @default.
- W4308767526 hasConcept C106889404 @default.
- W4308767526 hasConcept C117926987 @default.
- W4308767526 hasConcept C121332964 @default.
- W4308767526 hasConcept C127172972 @default.
- W4308767526 hasConcept C127413603 @default.
- W4308767526 hasConcept C130230704 @default.
- W4308767526 hasConcept C159188206 @default.
- W4308767526 hasConcept C159985019 @default.
- W4308767526 hasConcept C182748727 @default.
- W4308767526 hasConcept C192562407 @default.
- W4308767526 hasConcept C196558001 @default.
- W4308767526 hasConcept C21946209 @default.
- W4308767526 hasConcept C3020116064 @default.
- W4308767526 hasConcept C38349280 @default.
- W4308767526 hasConcept C47376073 @default.
- W4308767526 hasConcept C50517652 @default.
- W4308767526 hasConcept C57879066 @default.
- W4308767526 hasConcept C78519656 @default.
- W4308767526 hasConcept C89394759 @default.
- W4308767526 hasConcept C97355855 @default.
- W4308767526 hasConceptScore W4308767526C106889404 @default.
- W4308767526 hasConceptScore W4308767526C117926987 @default.