Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308767529> ?p ?o ?g. }
- W4308767529 abstract "Heavy metal elements, which inhibit plant development by destroying cell structure and wilting leaves, are easily absorbed by plants and eventually threaten human health via the food chain. Recently, with the increasing precision and refinement of optical instruments, optical imaging spectroscopy has gradually been applied to the detection and reaction of heavy metals in plants due to its in-situ , real-time, and simple operation compared with traditional chemical analysis methods. Moreover, the emergence of machine learning helps improve detection accuracy, making optical imaging spectroscopy comparable to conventional chemical analysis methods in some situations. This review (a): summarizes the progress of advanced optical imaging spectroscopy techniques coupled with artificial neural network algorithms for plant heavy metal detection over ten years from 2012-2022; (b) briefly describes and compares the principles and characteristics of spectroscopy and traditional chemical techniques applied to plants heavy metal detection, and the advantages of artificial neural network techniques including machine learning and deep learning techniques in combination with spectroscopy; (c) proposes the solutions such as coupling with other analytical and detection methods, portability, to address the challenges of unsatisfactory sensitivity of optical imaging spectroscopy and expensive instruments." @default.
- W4308767529 created "2022-11-15" @default.
- W4308767529 creator A5019447617 @default.
- W4308767529 creator A5038865594 @default.
- W4308767529 creator A5047681842 @default.
- W4308767529 creator A5058743657 @default.
- W4308767529 creator A5062672521 @default.
- W4308767529 date "2022-10-24" @default.
- W4308767529 modified "2023-10-13" @default.
- W4308767529 title "Optical imaging spectroscopy coupled with machine learning for detecting heavy metal of plants: A review" @default.
- W4308767529 cites W1195811870 @default.
- W4308767529 cites W1971856518 @default.
- W4308767529 cites W1985931804 @default.
- W4308767529 cites W1993608482 @default.
- W4308767529 cites W2000436649 @default.
- W4308767529 cites W2080157706 @default.
- W4308767529 cites W2127287797 @default.
- W4308767529 cites W2136251662 @default.
- W4308767529 cites W2179664742 @default.
- W4308767529 cites W2282736371 @default.
- W4308767529 cites W2283575093 @default.
- W4308767529 cites W2315986231 @default.
- W4308767529 cites W2348999911 @default.
- W4308767529 cites W2379475506 @default.
- W4308767529 cites W2539186373 @default.
- W4308767529 cites W2617736888 @default.
- W4308767529 cites W2620326362 @default.
- W4308767529 cites W2625212076 @default.
- W4308767529 cites W2737003381 @default.
- W4308767529 cites W2760630536 @default.
- W4308767529 cites W2761176843 @default.
- W4308767529 cites W2766610839 @default.
- W4308767529 cites W2780625821 @default.
- W4308767529 cites W2789280741 @default.
- W4308767529 cites W2806866670 @default.
- W4308767529 cites W2810896510 @default.
- W4308767529 cites W2891603263 @default.
- W4308767529 cites W2898597600 @default.
- W4308767529 cites W2899714170 @default.
- W4308767529 cites W2907344846 @default.
- W4308767529 cites W2907771707 @default.
- W4308767529 cites W2908493548 @default.
- W4308767529 cites W2912014118 @default.
- W4308767529 cites W2944276666 @default.
- W4308767529 cites W2985682743 @default.
- W4308767529 cites W2989663796 @default.
- W4308767529 cites W2991991929 @default.
- W4308767529 cites W2992743847 @default.
- W4308767529 cites W2998470429 @default.
- W4308767529 cites W3007918442 @default.
- W4308767529 cites W3011531216 @default.
- W4308767529 cites W3017444480 @default.
- W4308767529 cites W3033871337 @default.
- W4308767529 cites W3035869533 @default.
- W4308767529 cites W3036840743 @default.
- W4308767529 cites W3044998260 @default.
- W4308767529 cites W3083712094 @default.
- W4308767529 cites W3083811586 @default.
- W4308767529 cites W3104796057 @default.
- W4308767529 cites W3118936373 @default.
- W4308767529 cites W3131098687 @default.
- W4308767529 cites W3135387881 @default.
- W4308767529 cites W3136747216 @default.
- W4308767529 cites W3153636879 @default.
- W4308767529 cites W3155966371 @default.
- W4308767529 cites W3189671783 @default.
- W4308767529 cites W3195110460 @default.
- W4308767529 cites W3195686720 @default.
- W4308767529 cites W3205941559 @default.
- W4308767529 cites W4205194073 @default.
- W4308767529 cites W4206254379 @default.
- W4308767529 cites W4210943698 @default.
- W4308767529 cites W4234049480 @default.
- W4308767529 cites W4289524300 @default.
- W4308767529 doi "https://doi.org/10.3389/fpls.2022.1007991" @default.
- W4308767529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36352874" @default.
- W4308767529 hasPublicationYear "2022" @default.
- W4308767529 type Work @default.
- W4308767529 citedByCount "3" @default.
- W4308767529 countsByYear W43087675292023 @default.
- W4308767529 crossrefType "journal-article" @default.
- W4308767529 hasAuthorship W4308767529A5019447617 @default.
- W4308767529 hasAuthorship W4308767529A5038865594 @default.
- W4308767529 hasAuthorship W4308767529A5047681842 @default.
- W4308767529 hasAuthorship W4308767529A5058743657 @default.
- W4308767529 hasAuthorship W4308767529A5062672521 @default.
- W4308767529 hasBestOaLocation W43087675291 @default.
- W4308767529 hasConcept C119857082 @default.
- W4308767529 hasConcept C121332964 @default.
- W4308767529 hasConcept C154945302 @default.
- W4308767529 hasConcept C171250308 @default.
- W4308767529 hasConcept C186060115 @default.
- W4308767529 hasConcept C192562407 @default.
- W4308767529 hasConcept C199360897 @default.
- W4308767529 hasConcept C32891209 @default.
- W4308767529 hasConcept C41008148 @default.
- W4308767529 hasConcept C59822182 @default.
- W4308767529 hasConcept C62520636 @default.
- W4308767529 hasConcept C63000827 @default.
- W4308767529 hasConcept C86803240 @default.