Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308769917> ?p ?o ?g. }
- W4308769917 endingPage "13" @default.
- W4308769917 startingPage "1" @default.
- W4308769917 abstract "Emotions are strongly admitted as a main source to establish meaningful interactions between humans and computers. Thanks to the advancements in electroencephalography (EEG), especially in the usage of portable and cheap wearable EEG devices, the demand for identifying emotions has extremely increased. However, the overall scientific knowledge and works concerning EEG-based emotion recognition is still limited. To cover this issue, we introduce an EEG-based emotion recognition framework in this study. The proposed framework involves the following stages: preprocessing, feature extraction, feature selection and classification. For the preprocessing stage, multi scale principle component analysis and sysmlets-4 filter are used. A version of discrete wavelet transform (DWT), namely dual tree complex wavelet transform (DTCWT) is utilized for the feature extraction stage. To reduce the feature dimension size, a variety of statistical criteria are employed. For the final stage, we adopt ensemble classifiers due to their promising performance in classification problems. The proposed framework achieves nearly 96.8% accuracy by using random subspace ensemble classifier. It can therefore be resulted that the proposed EEG-based framework performs well in terms of identifying emotions." @default.
- W4308769917 created "2022-11-15" @default.
- W4308769917 creator A5043777091 @default.
- W4308769917 creator A5076009908 @default.
- W4308769917 date "2022-11-11" @default.
- W4308769917 modified "2023-09-26" @default.
- W4308769917 title "EEG-based emotion recognition using dual tree complex wavelet transform and random subspace ensemble classifier" @default.
- W4308769917 cites W1560157848 @default.
- W4308769917 cites W1947251450 @default.
- W4308769917 cites W1972805005 @default.
- W4308769917 cites W1988790447 @default.
- W4308769917 cites W1993694278 @default.
- W4308769917 cites W1995341919 @default.
- W4308769917 cites W2002055708 @default.
- W4308769917 cites W2010796033 @default.
- W4308769917 cites W2018332268 @default.
- W4308769917 cites W2049762839 @default.
- W4308769917 cites W2064770205 @default.
- W4308769917 cites W2065591343 @default.
- W4308769917 cites W2088252378 @default.
- W4308769917 cites W2108949035 @default.
- W4308769917 cites W2112797878 @default.
- W4308769917 cites W2113242816 @default.
- W4308769917 cites W2134715294 @default.
- W4308769917 cites W2139564752 @default.
- W4308769917 cites W2150757437 @default.
- W4308769917 cites W2157124852 @default.
- W4308769917 cites W2170415219 @default.
- W4308769917 cites W2176865601 @default.
- W4308769917 cites W2507306959 @default.
- W4308769917 cites W2565944610 @default.
- W4308769917 cites W2580887161 @default.
- W4308769917 cites W2611647730 @default.
- W4308769917 cites W2625652088 @default.
- W4308769917 cites W2741038359 @default.
- W4308769917 cites W2761266324 @default.
- W4308769917 cites W2762323924 @default.
- W4308769917 cites W2763512256 @default.
- W4308769917 cites W2771280538 @default.
- W4308769917 cites W2776646997 @default.
- W4308769917 cites W2788722888 @default.
- W4308769917 cites W2884935442 @default.
- W4308769917 cites W2888184955 @default.
- W4308769917 cites W2897127292 @default.
- W4308769917 cites W2898242330 @default.
- W4308769917 cites W2907709934 @default.
- W4308769917 cites W2919207065 @default.
- W4308769917 cites W2921108922 @default.
- W4308769917 cites W2944071464 @default.
- W4308769917 cites W2962905870 @default.
- W4308769917 cites W2991224771 @default.
- W4308769917 cites W2997412521 @default.
- W4308769917 cites W3004006917 @default.
- W4308769917 cites W3083218890 @default.
- W4308769917 cites W3087220290 @default.
- W4308769917 cites W3121961436 @default.
- W4308769917 cites W3139254304 @default.
- W4308769917 cites W3156356077 @default.
- W4308769917 cites W3172382993 @default.
- W4308769917 cites W3216204909 @default.
- W4308769917 cites W4239510810 @default.
- W4308769917 cites W4254077482 @default.
- W4308769917 doi "https://doi.org/10.1080/10255842.2022.2143714" @default.
- W4308769917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36367337" @default.
- W4308769917 hasPublicationYear "2022" @default.
- W4308769917 type Work @default.
- W4308769917 citedByCount "3" @default.
- W4308769917 countsByYear W43087699172023 @default.
- W4308769917 crossrefType "journal-article" @default.
- W4308769917 hasAuthorship W4308769917A5043777091 @default.
- W4308769917 hasAuthorship W4308769917A5076009908 @default.
- W4308769917 hasConcept C106135958 @default.
- W4308769917 hasConcept C118552586 @default.
- W4308769917 hasConcept C153180895 @default.
- W4308769917 hasConcept C154945302 @default.
- W4308769917 hasConcept C15744967 @default.
- W4308769917 hasConcept C169258074 @default.
- W4308769917 hasConcept C196216189 @default.
- W4308769917 hasConcept C28490314 @default.
- W4308769917 hasConcept C32834561 @default.
- W4308769917 hasConcept C34736171 @default.
- W4308769917 hasConcept C41008148 @default.
- W4308769917 hasConcept C45942800 @default.
- W4308769917 hasConcept C46286280 @default.
- W4308769917 hasConcept C47432892 @default.
- W4308769917 hasConcept C522805319 @default.
- W4308769917 hasConcept C52622490 @default.
- W4308769917 hasConcept C95623464 @default.
- W4308769917 hasConceptScore W4308769917C106135958 @default.
- W4308769917 hasConceptScore W4308769917C118552586 @default.
- W4308769917 hasConceptScore W4308769917C153180895 @default.
- W4308769917 hasConceptScore W4308769917C154945302 @default.
- W4308769917 hasConceptScore W4308769917C15744967 @default.
- W4308769917 hasConceptScore W4308769917C169258074 @default.
- W4308769917 hasConceptScore W4308769917C196216189 @default.
- W4308769917 hasConceptScore W4308769917C28490314 @default.
- W4308769917 hasConceptScore W4308769917C32834561 @default.
- W4308769917 hasConceptScore W4308769917C34736171 @default.