Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308769931> ?p ?o ?g. }
- W4308769931 abstract "Abstract Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient’s mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient’s unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ ." @default.
- W4308769931 created "2022-11-15" @default.
- W4308769931 creator A5005150832 @default.
- W4308769931 creator A5013601146 @default.
- W4308769931 creator A5035675448 @default.
- W4308769931 creator A5037114145 @default.
- W4308769931 creator A5048505759 @default.
- W4308769931 creator A5050513983 @default.
- W4308769931 creator A5073854686 @default.
- W4308769931 date "2022-11-07" @default.
- W4308769931 modified "2023-10-15" @default.
- W4308769931 title "Machine learning based personalized drug response prediction for lung cancer patients" @default.
- W4308769931 cites W1548178570 @default.
- W4308769931 cites W1753659383 @default.
- W4308769931 cites W1831050183 @default.
- W4308769931 cites W1977222363 @default.
- W4308769931 cites W1982289281 @default.
- W4308769931 cites W1988782368 @default.
- W4308769931 cites W1989228404 @default.
- W4308769931 cites W1995653433 @default.
- W4308769931 cites W2004822259 @default.
- W4308769931 cites W2006118135 @default.
- W4308769931 cites W2011419722 @default.
- W4308769931 cites W2016060560 @default.
- W4308769931 cites W2038682861 @default.
- W4308769931 cites W2046799991 @default.
- W4308769931 cites W2063384380 @default.
- W4308769931 cites W2079586464 @default.
- W4308769931 cites W2088879148 @default.
- W4308769931 cites W2093221728 @default.
- W4308769931 cites W2093921289 @default.
- W4308769931 cites W2095719702 @default.
- W4308769931 cites W2100561975 @default.
- W4308769931 cites W2103325328 @default.
- W4308769931 cites W2114520383 @default.
- W4308769931 cites W2117266709 @default.
- W4308769931 cites W2117340749 @default.
- W4308769931 cites W2130479394 @default.
- W4308769931 cites W2134574317 @default.
- W4308769931 cites W2134970730 @default.
- W4308769931 cites W2137297899 @default.
- W4308769931 cites W2139236349 @default.
- W4308769931 cites W2142407957 @default.
- W4308769931 cites W2144180913 @default.
- W4308769931 cites W2144775933 @default.
- W4308769931 cites W2153457180 @default.
- W4308769931 cites W2169077388 @default.
- W4308769931 cites W2248457895 @default.
- W4308769931 cites W2281689329 @default.
- W4308769931 cites W2310104311 @default.
- W4308769931 cites W2326242291 @default.
- W4308769931 cites W2332712348 @default.
- W4308769931 cites W2387232410 @default.
- W4308769931 cites W2507541911 @default.
- W4308769931 cites W2510837837 @default.
- W4308769931 cites W2513408092 @default.
- W4308769931 cites W2554174612 @default.
- W4308769931 cites W2607941874 @default.
- W4308769931 cites W2736835377 @default.
- W4308769931 cites W2768713002 @default.
- W4308769931 cites W2769747349 @default.
- W4308769931 cites W2785947426 @default.
- W4308769931 cites W2788317900 @default.
- W4308769931 cites W2794354720 @default.
- W4308769931 cites W2801058525 @default.
- W4308769931 cites W2889325774 @default.
- W4308769931 cites W2988550756 @default.
- W4308769931 cites W2990351990 @default.
- W4308769931 cites W3004127313 @default.
- W4308769931 cites W3005384551 @default.
- W4308769931 cites W3027977667 @default.
- W4308769931 cites W3089488726 @default.
- W4308769931 cites W4205124816 @default.
- W4308769931 cites W4206841660 @default.
- W4308769931 cites W4206919522 @default.
- W4308769931 doi "https://doi.org/10.1038/s41598-022-23649-0" @default.
- W4308769931 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36344580" @default.
- W4308769931 hasPublicationYear "2022" @default.
- W4308769931 type Work @default.
- W4308769931 citedByCount "3" @default.
- W4308769931 countsByYear W43087699312022 @default.
- W4308769931 countsByYear W43087699312023 @default.
- W4308769931 crossrefType "journal-article" @default.
- W4308769931 hasAuthorship W4308769931A5005150832 @default.
- W4308769931 hasAuthorship W4308769931A5013601146 @default.
- W4308769931 hasAuthorship W4308769931A5035675448 @default.
- W4308769931 hasAuthorship W4308769931A5037114145 @default.
- W4308769931 hasAuthorship W4308769931A5048505759 @default.
- W4308769931 hasAuthorship W4308769931A5050513983 @default.
- W4308769931 hasAuthorship W4308769931A5073854686 @default.
- W4308769931 hasBestOaLocation W43087699311 @default.
- W4308769931 hasConcept C114851261 @default.
- W4308769931 hasConcept C119857082 @default.
- W4308769931 hasConcept C121608353 @default.
- W4308769931 hasConcept C126322002 @default.
- W4308769931 hasConcept C143998085 @default.
- W4308769931 hasConcept C154945302 @default.
- W4308769931 hasConcept C2776256026 @default.
- W4308769931 hasConcept C2777506169 @default.
- W4308769931 hasConcept C2778087573 @default.