Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308784227> ?p ?o ?g. }
- W4308784227 endingPage "101911" @default.
- W4308784227 startingPage "101911" @default.
- W4308784227 abstract "Freshwater crayfish are one of the most important aquatic organisms that play a pivotal role in the aquatic food chain as well as serving as bioindicators for the aquatic ecosystem health assessment. Hemocytes, the blood cells of crustaceans, can be considered stress and health indicators in crayfish, and are used to evaluate the health response. Therefore, total hemocyte cell numbers (THCs) are useful parameters to show the health of crustaceans and serve as stress indicators to decide the quality of the habitat. Since, catching the fish and the other aquatic organisms, and collecting the data for further assessments are time-consuming and frustrating, today, scientists tend to use swift, more sophisticated, and more reliable methods for modeling the ecosystem stressors based on bioindicators. One tool which has attracted the attention of science communities in the last decades is machine learning algorithms that are reliable and accurate methods to solve classification and regression problems. In this study, a support vector machine is carried out as a machine learning algorithm to classify healthy and unhealthy crayfish based on physiological characteristics. To solve the non-linearity problem of the data by transporting data to high-dimensional space, different kernel functions including polynomial (PK), Pearson VII function-based universal (PUK), and radial basis function (RBF) kernels are used and their effect on the performance of the SVM model was evaluated. Both PK and PUK functions performed well in classifying the crayfish. RBF, however, had an adverse impact on the performance of the model. PUK kernel exhibited an outstanding performance (Accuracy = 100%) for the classification of the healthy and unhealthy crayfish. • SVM exhibited an outstanding performance in classifying the crayfish • The results showed the effect of kernels on the performance of the classifier • PUK kernel has increased the accuracy of the SVM to 100% • The adverse impact of the RBF kernel on the accuracy of the SVM has been observed" @default.
- W4308784227 created "2022-11-15" @default.
- W4308784227 creator A5012100662 @default.
- W4308784227 creator A5038087690 @default.
- W4308784227 creator A5045527622 @default.
- W4308784227 creator A5068374843 @default.
- W4308784227 date "2022-12-01" @default.
- W4308784227 modified "2023-10-12" @default.
- W4308784227 title "Effect of polynomial, radial basis, and Pearson VII function kernels in support vector machine algorithm for classification of crayfish" @default.
- W4308784227 cites W1964940342 @default.
- W4308784227 cites W1970280151 @default.
- W4308784227 cites W1972600958 @default.
- W4308784227 cites W1973237176 @default.
- W4308784227 cites W19744801 @default.
- W4308784227 cites W1978701299 @default.
- W4308784227 cites W1982910530 @default.
- W4308784227 cites W1994782319 @default.
- W4308784227 cites W2001385167 @default.
- W4308784227 cites W2006067049 @default.
- W4308784227 cites W2009874156 @default.
- W4308784227 cites W2032402430 @default.
- W4308784227 cites W2037796410 @default.
- W4308784227 cites W2086350890 @default.
- W4308784227 cites W2089723610 @default.
- W4308784227 cites W2093175536 @default.
- W4308784227 cites W2097936772 @default.
- W4308784227 cites W2107074288 @default.
- W4308784227 cites W2109708662 @default.
- W4308784227 cites W2126819771 @default.
- W4308784227 cites W2152497556 @default.
- W4308784227 cites W2337018509 @default.
- W4308784227 cites W2466877391 @default.
- W4308784227 cites W2593330790 @default.
- W4308784227 cites W2743201965 @default.
- W4308784227 cites W2768940097 @default.
- W4308784227 cites W2770555377 @default.
- W4308784227 cites W2771097459 @default.
- W4308784227 cites W2778146750 @default.
- W4308784227 cites W2809366126 @default.
- W4308784227 cites W2883380892 @default.
- W4308784227 cites W2886228267 @default.
- W4308784227 cites W2939053413 @default.
- W4308784227 cites W2947113292 @default.
- W4308784227 cites W2967260502 @default.
- W4308784227 cites W2985719983 @default.
- W4308784227 cites W3030859621 @default.
- W4308784227 cites W3094321741 @default.
- W4308784227 cites W3162327655 @default.
- W4308784227 cites W3188013202 @default.
- W4308784227 cites W3204164233 @default.
- W4308784227 cites W3208466896 @default.
- W4308784227 cites W3209934268 @default.
- W4308784227 cites W3211661593 @default.
- W4308784227 cites W3212619461 @default.
- W4308784227 cites W4239510810 @default.
- W4308784227 cites W4294643512 @default.
- W4308784227 doi "https://doi.org/10.1016/j.ecoinf.2022.101911" @default.
- W4308784227 hasPublicationYear "2022" @default.
- W4308784227 type Work @default.
- W4308784227 citedByCount "2" @default.
- W4308784227 countsByYear W43087842272023 @default.
- W4308784227 crossrefType "journal-article" @default.
- W4308784227 hasAuthorship W4308784227A5012100662 @default.
- W4308784227 hasAuthorship W4308784227A5038087690 @default.
- W4308784227 hasAuthorship W4308784227A5045527622 @default.
- W4308784227 hasAuthorship W4308784227A5068374843 @default.
- W4308784227 hasConcept C11413529 @default.
- W4308784227 hasConcept C12267149 @default.
- W4308784227 hasConcept C12426560 @default.
- W4308784227 hasConcept C134306372 @default.
- W4308784227 hasConcept C14036430 @default.
- W4308784227 hasConcept C14948415 @default.
- W4308784227 hasConcept C153180895 @default.
- W4308784227 hasConcept C154945302 @default.
- W4308784227 hasConcept C18903297 @default.
- W4308784227 hasConcept C2524010 @default.
- W4308784227 hasConcept C2781403440 @default.
- W4308784227 hasConcept C33923547 @default.
- W4308784227 hasConcept C41008148 @default.
- W4308784227 hasConcept C50644808 @default.
- W4308784227 hasConcept C78458016 @default.
- W4308784227 hasConcept C86803240 @default.
- W4308784227 hasConcept C90119067 @default.
- W4308784227 hasConcept C98856871 @default.
- W4308784227 hasConceptScore W4308784227C11413529 @default.
- W4308784227 hasConceptScore W4308784227C12267149 @default.
- W4308784227 hasConceptScore W4308784227C12426560 @default.
- W4308784227 hasConceptScore W4308784227C134306372 @default.
- W4308784227 hasConceptScore W4308784227C14036430 @default.
- W4308784227 hasConceptScore W4308784227C14948415 @default.
- W4308784227 hasConceptScore W4308784227C153180895 @default.
- W4308784227 hasConceptScore W4308784227C154945302 @default.
- W4308784227 hasConceptScore W4308784227C18903297 @default.
- W4308784227 hasConceptScore W4308784227C2524010 @default.
- W4308784227 hasConceptScore W4308784227C2781403440 @default.
- W4308784227 hasConceptScore W4308784227C33923547 @default.
- W4308784227 hasConceptScore W4308784227C41008148 @default.
- W4308784227 hasConceptScore W4308784227C50644808 @default.