Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308786324> ?p ?o ?g. }
- W4308786324 endingPage "565" @default.
- W4308786324 startingPage "565" @default.
- W4308786324 abstract "The dynamic development of deep learning methods in recent years has prompted the widespread application of these algorithms in the field of photogrammetry and remote sensing, especially in the areas of image recognition, classification, and object detection. Still, one of the biggest challenges in this field is the low availability of training datasets, especially regarding applications of oblique aerial imagery and UAV data. The process of acquiring such databases is labor-intensive. The solution to the problem of the unavailability of datasets and the need for manual annotation is to automate the process of generating annotations for images. One such approach is used in the following work. The proposed methodology for semi-automating the creation of training datasets was applied to detect objects on nadir and oblique images acquired from UAV. The methodology includes the following steps: (1) the generation of a dense 3D point cloud by two different methods: UAV photogrammetry and TLS (terrestrial laser scanning); (2) data processing, including clipping to objects and filtering of point clouds; (3) the projection of cloud points onto aerial images; and (4) the generation of bounding boxes bounding the objects of interest. In addition, the experiments performed are designed to test the accuracy and quality of the training datasets acquired in the proposed way. The effect of the accuracy of the point cloud extracted from dense UAV image matching on the resulting bounding boxes extracted by the proposed method was evaluated." @default.
- W4308786324 created "2022-11-15" @default.
- W4308786324 creator A5000752434 @default.
- W4308786324 creator A5042801479 @default.
- W4308786324 creator A5045708001 @default.
- W4308786324 creator A5090186143 @default.
- W4308786324 date "2022-11-10" @default.
- W4308786324 modified "2023-09-26" @default.
- W4308786324 title "The Influence of Point Cloud Accuracy from Image Matching on Automatic Preparation of Training Datasets for Object Detection in UAV Images" @default.
- W4308786324 cites W1516887802 @default.
- W4308786324 cites W1594676769 @default.
- W4308786324 cites W1861492603 @default.
- W4308786324 cites W2037227137 @default.
- W4308786324 cites W2059357486 @default.
- W4308786324 cites W2087987658 @default.
- W4308786324 cites W2117539524 @default.
- W4308786324 cites W2158479016 @default.
- W4308786324 cites W2168356304 @default.
- W4308786324 cites W2176924101 @default.
- W4308786324 cites W2296151615 @default.
- W4308786324 cites W2436494909 @default.
- W4308786324 cites W2595735962 @default.
- W4308786324 cites W2772489440 @default.
- W4308786324 cites W2774869152 @default.
- W4308786324 cites W2792542990 @default.
- W4308786324 cites W2901422868 @default.
- W4308786324 cites W2948202452 @default.
- W4308786324 cites W2963323326 @default.
- W4308786324 cites W2967268202 @default.
- W4308786324 cites W2992240579 @default.
- W4308786324 cites W3017667312 @default.
- W4308786324 cites W3033348336 @default.
- W4308786324 cites W3036271496 @default.
- W4308786324 cites W3086556255 @default.
- W4308786324 cites W3102368068 @default.
- W4308786324 cites W3124372372 @default.
- W4308786324 cites W3132780880 @default.
- W4308786324 cites W3134891168 @default.
- W4308786324 cites W3152635971 @default.
- W4308786324 cites W3159692672 @default.
- W4308786324 cites W3166943914 @default.
- W4308786324 cites W3198853524 @default.
- W4308786324 cites W4213058700 @default.
- W4308786324 cites W4281747054 @default.
- W4308786324 doi "https://doi.org/10.3390/ijgi11110565" @default.
- W4308786324 hasPublicationYear "2022" @default.
- W4308786324 type Work @default.
- W4308786324 citedByCount "0" @default.
- W4308786324 crossrefType "journal-article" @default.
- W4308786324 hasAuthorship W4308786324A5000752434 @default.
- W4308786324 hasAuthorship W4308786324A5042801479 @default.
- W4308786324 hasAuthorship W4308786324A5045708001 @default.
- W4308786324 hasAuthorship W4308786324A5090186143 @default.
- W4308786324 hasBestOaLocation W43087863241 @default.
- W4308786324 hasConcept C105795698 @default.
- W4308786324 hasConcept C111919701 @default.
- W4308786324 hasConcept C115961682 @default.
- W4308786324 hasConcept C117455697 @default.
- W4308786324 hasConcept C131979681 @default.
- W4308786324 hasConcept C138885662 @default.
- W4308786324 hasConcept C147037132 @default.
- W4308786324 hasConcept C153180895 @default.
- W4308786324 hasConcept C154945302 @default.
- W4308786324 hasConcept C165064840 @default.
- W4308786324 hasConcept C202444582 @default.
- W4308786324 hasConcept C205649164 @default.
- W4308786324 hasConcept C2776151529 @default.
- W4308786324 hasConcept C2776848632 @default.
- W4308786324 hasConcept C31972630 @default.
- W4308786324 hasConcept C33923547 @default.
- W4308786324 hasConcept C41008148 @default.
- W4308786324 hasConcept C41895202 @default.
- W4308786324 hasConcept C62649853 @default.
- W4308786324 hasConcept C9652623 @default.
- W4308786324 hasConcept C98045186 @default.
- W4308786324 hasConceptScore W4308786324C105795698 @default.
- W4308786324 hasConceptScore W4308786324C111919701 @default.
- W4308786324 hasConceptScore W4308786324C115961682 @default.
- W4308786324 hasConceptScore W4308786324C117455697 @default.
- W4308786324 hasConceptScore W4308786324C131979681 @default.
- W4308786324 hasConceptScore W4308786324C138885662 @default.
- W4308786324 hasConceptScore W4308786324C147037132 @default.
- W4308786324 hasConceptScore W4308786324C153180895 @default.
- W4308786324 hasConceptScore W4308786324C154945302 @default.
- W4308786324 hasConceptScore W4308786324C165064840 @default.
- W4308786324 hasConceptScore W4308786324C202444582 @default.
- W4308786324 hasConceptScore W4308786324C205649164 @default.
- W4308786324 hasConceptScore W4308786324C2776151529 @default.
- W4308786324 hasConceptScore W4308786324C2776848632 @default.
- W4308786324 hasConceptScore W4308786324C31972630 @default.
- W4308786324 hasConceptScore W4308786324C33923547 @default.
- W4308786324 hasConceptScore W4308786324C41008148 @default.
- W4308786324 hasConceptScore W4308786324C41895202 @default.
- W4308786324 hasConceptScore W4308786324C62649853 @default.
- W4308786324 hasConceptScore W4308786324C9652623 @default.
- W4308786324 hasConceptScore W4308786324C98045186 @default.
- W4308786324 hasFunder F4320335039 @default.
- W4308786324 hasIssue "11" @default.