Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308789780> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4308789780 endingPage "100358" @default.
- W4308789780 startingPage "100358" @default.
- W4308789780 abstract "To support the various analysis application of big data, big data processing frameworks are designed to be highly configurable. However, for common users, it is difficult to tailor the configurable frameworks to achieve optimal performance for every application. Recently, many automatic tuning methods are proposed to configure these frameworks. In detail, these methods firstly build a performance prediction model through sampling configurations randomly and measuring the corresponding performance. Then, they conduct heuristic search in the configuration space based on the performance prediction model. For most frameworks, it is too expensive to build the performance model since it needs to measure the performance of large amounts of configurations, which cause too much overhead on data collection. In this paper, we propose a novel data-efficient method to build the performance model with little impact on prediction accuracy. Compared to the traditional methods, the proposed method can reduce the overhead of data collection because it can train the performance model with much less training examples. Specifically, the proposed method can actively sample the important examples according to the dynamic requirement of the performance model during the iterative model updating. Hence, it can make full use of the collected informative data and train the performance model with much less training examples. To sample the important training examples, we employ several virtual performance model to estimate the importance of all candidate configurations efficiently. Experimental results show that our method needs less training examples than traditional methods with little impact on prediction accuracy." @default.
- W4308789780 created "2022-11-15" @default.
- W4308789780 creator A5016486553 @default.
- W4308789780 creator A5022262922 @default.
- W4308789780 creator A5060341807 @default.
- W4308789780 date "2022-11-01" @default.
- W4308789780 modified "2023-10-01" @default.
- W4308789780 title "Data-Efficient Performance Modeling for Configurable Big Data Frameworks by Reducing Information Overlap Between Training Examples" @default.
- W4308789780 cites W2173213060 @default.
- W4308789780 cites W2294316975 @default.
- W4308789780 cites W2318383848 @default.
- W4308789780 cites W2766881562 @default.
- W4308789780 cites W2768061914 @default.
- W4308789780 cites W2970836712 @default.
- W4308789780 cites W3009924968 @default.
- W4308789780 cites W3022630129 @default.
- W4308789780 cites W3047564823 @default.
- W4308789780 doi "https://doi.org/10.1016/j.bdr.2022.100358" @default.
- W4308789780 hasPublicationYear "2022" @default.
- W4308789780 type Work @default.
- W4308789780 citedByCount "1" @default.
- W4308789780 countsByYear W43087897802023 @default.
- W4308789780 crossrefType "journal-article" @default.
- W4308789780 hasAuthorship W4308789780A5016486553 @default.
- W4308789780 hasAuthorship W4308789780A5022262922 @default.
- W4308789780 hasAuthorship W4308789780A5060341807 @default.
- W4308789780 hasConcept C121332964 @default.
- W4308789780 hasConcept C124101348 @default.
- W4308789780 hasConcept C153294291 @default.
- W4308789780 hasConcept C154945302 @default.
- W4308789780 hasConcept C2522767166 @default.
- W4308789780 hasConcept C2777211547 @default.
- W4308789780 hasConcept C41008148 @default.
- W4308789780 hasConcept C51632099 @default.
- W4308789780 hasConcept C75684735 @default.
- W4308789780 hasConceptScore W4308789780C121332964 @default.
- W4308789780 hasConceptScore W4308789780C124101348 @default.
- W4308789780 hasConceptScore W4308789780C153294291 @default.
- W4308789780 hasConceptScore W4308789780C154945302 @default.
- W4308789780 hasConceptScore W4308789780C2522767166 @default.
- W4308789780 hasConceptScore W4308789780C2777211547 @default.
- W4308789780 hasConceptScore W4308789780C41008148 @default.
- W4308789780 hasConceptScore W4308789780C51632099 @default.
- W4308789780 hasConceptScore W4308789780C75684735 @default.
- W4308789780 hasLocation W43087897801 @default.
- W4308789780 hasOpenAccess W4308789780 @default.
- W4308789780 hasPrimaryLocation W43087897801 @default.
- W4308789780 hasRelatedWork W1996408511 @default.
- W4308789780 hasRelatedWork W2183332931 @default.
- W4308789780 hasRelatedWork W2577361510 @default.
- W4308789780 hasRelatedWork W2608950002 @default.
- W4308789780 hasRelatedWork W280853923 @default.
- W4308789780 hasRelatedWork W2808989540 @default.
- W4308789780 hasRelatedWork W2906467684 @default.
- W4308789780 hasRelatedWork W4205307913 @default.
- W4308789780 hasRelatedWork W4233433221 @default.
- W4308789780 hasRelatedWork W2558600762 @default.
- W4308789780 hasVolume "30" @default.
- W4308789780 isParatext "false" @default.
- W4308789780 isRetracted "false" @default.
- W4308789780 workType "article" @default.