Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308790320> ?p ?o ?g. }
- W4308790320 endingPage "452" @default.
- W4308790320 startingPage "422" @default.
- W4308790320 abstract "Due to the relatively low spatial resolution of sensors and the complex distributions of materials, many mixed pixels exist in the hyperspectral imagery and inevitably degrade the performance of high-level data processing. Swarm intelligence (SI) algorithm is one of major techniques to solve some difficult optimization problems and has been successfully used in the application of hyperspectral unmixing. This chapter is particularly interested in SI algorithms that can be implemented in three spectral mixing models: linear mixing model (LMM), normal compositional model (NCM), and nonlinear mixing model (NLMM)." @default.
- W4308790320 created "2022-11-15" @default.
- W4308790320 creator A5022920106 @default.
- W4308790320 creator A5044689489 @default.
- W4308790320 creator A5045473616 @default.
- W4308790320 creator A5056153465 @default.
- W4308790320 creator A5063667378 @default.
- W4308790320 creator A5066378186 @default.
- W4308790320 date "2022-11-11" @default.
- W4308790320 modified "2023-09-23" @default.
- W4308790320 title "Swarm Intelligence Optimization‐Based Spectral Unmixing" @default.
- W4308790320 cites W1965340435 @default.
- W4308790320 cites W1974445331 @default.
- W4308790320 cites W1981367467 @default.
- W4308790320 cites W1994108894 @default.
- W4308790320 cites W2000779965 @default.
- W4308790320 cites W2011315899 @default.
- W4308790320 cites W2023518723 @default.
- W4308790320 cites W2025907697 @default.
- W4308790320 cites W2031693516 @default.
- W4308790320 cites W2042626896 @default.
- W4308790320 cites W2055225600 @default.
- W4308790320 cites W2074010031 @default.
- W4308790320 cites W2080920313 @default.
- W4308790320 cites W2081749411 @default.
- W4308790320 cites W2088259770 @default.
- W4308790320 cites W2097211423 @default.
- W4308790320 cites W2098098075 @default.
- W4308790320 cites W2101837437 @default.
- W4308790320 cites W2107222994 @default.
- W4308790320 cites W2109115094 @default.
- W4308790320 cites W2109364787 @default.
- W4308790320 cites W2114486983 @default.
- W4308790320 cites W2116699851 @default.
- W4308790320 cites W2123038108 @default.
- W4308790320 cites W2126804077 @default.
- W4308790320 cites W2127062304 @default.
- W4308790320 cites W2134328014 @default.
- W4308790320 cites W2136625467 @default.
- W4308790320 cites W2140216497 @default.
- W4308790320 cites W2143560894 @default.
- W4308790320 cites W2147353113 @default.
- W4308790320 cites W2157321686 @default.
- W4308790320 cites W2161344247 @default.
- W4308790320 cites W2163886442 @default.
- W4308790320 cites W2165299997 @default.
- W4308790320 cites W2165755981 @default.
- W4308790320 cites W2169245194 @default.
- W4308790320 cites W2169924573 @default.
- W4308790320 cites W2170078675 @default.
- W4308790320 cites W2191172738 @default.
- W4308790320 cites W2486715098 @default.
- W4308790320 cites W2506684654 @default.
- W4308790320 cites W2519375576 @default.
- W4308790320 cites W2529866303 @default.
- W4308790320 cites W2543580944 @default.
- W4308790320 cites W2553333899 @default.
- W4308790320 cites W2567948266 @default.
- W4308790320 cites W2588006408 @default.
- W4308790320 cites W2605997226 @default.
- W4308790320 cites W2625894731 @default.
- W4308790320 cites W3195212285 @default.
- W4308790320 cites W4248253651 @default.
- W4308790320 cites W4250589301 @default.
- W4308790320 doi "https://doi.org/10.1002/9781119687788.ch15" @default.
- W4308790320 hasPublicationYear "2022" @default.
- W4308790320 type Work @default.
- W4308790320 citedByCount "0" @default.
- W4308790320 crossrefType "other" @default.
- W4308790320 hasAuthorship W4308790320A5022920106 @default.
- W4308790320 hasAuthorship W4308790320A5044689489 @default.
- W4308790320 hasAuthorship W4308790320A5045473616 @default.
- W4308790320 hasAuthorship W4308790320A5056153465 @default.
- W4308790320 hasAuthorship W4308790320A5063667378 @default.
- W4308790320 hasAuthorship W4308790320A5066378186 @default.
- W4308790320 hasConcept C11413529 @default.
- W4308790320 hasConcept C119487961 @default.
- W4308790320 hasConcept C121332964 @default.
- W4308790320 hasConcept C124101348 @default.
- W4308790320 hasConcept C138777275 @default.
- W4308790320 hasConcept C153180895 @default.
- W4308790320 hasConcept C154945302 @default.
- W4308790320 hasConcept C158622935 @default.
- W4308790320 hasConcept C159078339 @default.
- W4308790320 hasConcept C160633673 @default.
- W4308790320 hasConcept C181335050 @default.
- W4308790320 hasConcept C205649164 @default.
- W4308790320 hasConcept C41008148 @default.
- W4308790320 hasConcept C62520636 @default.
- W4308790320 hasConcept C62649853 @default.
- W4308790320 hasConcept C85617194 @default.
- W4308790320 hasConceptScore W4308790320C11413529 @default.
- W4308790320 hasConceptScore W4308790320C119487961 @default.
- W4308790320 hasConceptScore W4308790320C121332964 @default.
- W4308790320 hasConceptScore W4308790320C124101348 @default.
- W4308790320 hasConceptScore W4308790320C138777275 @default.
- W4308790320 hasConceptScore W4308790320C153180895 @default.
- W4308790320 hasConceptScore W4308790320C154945302 @default.