Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308792280> ?p ?o ?g. }
- W4308792280 abstract "Machine Learning has become more important for materials engineering in the last decade. Globally, automated machine learning (AutoML) is growing in popularity with the increasing demand for data analysis solutions. Yet, it is not frequently used for small tabular data. Comparisons and benchmarks already exist to assess the qualities of AutoML tools in general, but none of them elaborates on the surrounding conditions of materials engineers working with experimental data: small datasets with less than 1000 samples. This benchmark addresses these conditions and draws special attention to the overall competitiveness with manual data analysis. Four representative AutoML frameworks are used to evaluate twelve domain-specific datasets to provide orientation on the promises of AutoML in the field of materials engineering. Performance, robustness and usability are discussed in particular. The results lead to two main conclusions: First, AutoML is highly competitive with manual model optimization, even with little training time. Second, the data sampling for train and test data is of crucial importance for reliable results." @default.
- W4308792280 created "2022-11-15" @default.
- W4308792280 creator A5007294290 @default.
- W4308792280 creator A5032104155 @default.
- W4308792280 creator A5065137982 @default.
- W4308792280 creator A5066753620 @default.
- W4308792280 creator A5082428811 @default.
- W4308792280 date "2022-11-11" @default.
- W4308792280 modified "2023-09-30" @default.
- W4308792280 title "Benchmarking AutoML for regression tasks on small tabular data in materials design" @default.
- W4308792280 cites W158824538 @default.
- W4308792280 cites W1982514318 @default.
- W4308792280 cites W2017476428 @default.
- W4308792280 cites W2045257928 @default.
- W4308792280 cites W2061933243 @default.
- W4308792280 cites W2088053778 @default.
- W4308792280 cites W2105981176 @default.
- W4308792280 cites W2167849100 @default.
- W4308792280 cites W2762833825 @default.
- W4308792280 cites W2800685560 @default.
- W4308792280 cites W2800722845 @default.
- W4308792280 cites W2809290718 @default.
- W4308792280 cites W2885048850 @default.
- W4308792280 cites W2901141223 @default.
- W4308792280 cites W2910813586 @default.
- W4308792280 cites W2950580808 @default.
- W4308792280 cites W2955219525 @default.
- W4308792280 cites W2963389298 @default.
- W4308792280 cites W2964938350 @default.
- W4308792280 cites W2966284335 @default.
- W4308792280 cites W2968923792 @default.
- W4308792280 cites W2970602317 @default.
- W4308792280 cites W2972418846 @default.
- W4308792280 cites W2976353133 @default.
- W4308792280 cites W2981679558 @default.
- W4308792280 cites W2999359202 @default.
- W4308792280 cites W3005880794 @default.
- W4308792280 cites W3006913750 @default.
- W4308792280 cites W3037485026 @default.
- W4308792280 cites W3100220443 @default.
- W4308792280 cites W3100445615 @default.
- W4308792280 cites W3103799692 @default.
- W4308792280 cites W3134886887 @default.
- W4308792280 cites W3138215796 @default.
- W4308792280 cites W3139250374 @default.
- W4308792280 cites W3143179966 @default.
- W4308792280 cites W3155755963 @default.
- W4308792280 cites W3159760278 @default.
- W4308792280 cites W3159952738 @default.
- W4308792280 cites W3160033795 @default.
- W4308792280 cites W3162874429 @default.
- W4308792280 cites W3175956061 @default.
- W4308792280 cites W3179009462 @default.
- W4308792280 cites W3186456638 @default.
- W4308792280 cites W3201904098 @default.
- W4308792280 cites W3215518215 @default.
- W4308792280 cites W4200570147 @default.
- W4308792280 cites W4213308398 @default.
- W4308792280 cites W4288364295 @default.
- W4308792280 doi "https://doi.org/10.1038/s41598-022-23327-1" @default.
- W4308792280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36369464" @default.
- W4308792280 hasPublicationYear "2022" @default.
- W4308792280 type Work @default.
- W4308792280 citedByCount "6" @default.
- W4308792280 countsByYear W43087922802023 @default.
- W4308792280 crossrefType "journal-article" @default.
- W4308792280 hasAuthorship W4308792280A5007294290 @default.
- W4308792280 hasAuthorship W4308792280A5032104155 @default.
- W4308792280 hasAuthorship W4308792280A5065137982 @default.
- W4308792280 hasAuthorship W4308792280A5066753620 @default.
- W4308792280 hasAuthorship W4308792280A5082428811 @default.
- W4308792280 hasBestOaLocation W43087922801 @default.
- W4308792280 hasConcept C104317684 @default.
- W4308792280 hasConcept C107457646 @default.
- W4308792280 hasConcept C119857082 @default.
- W4308792280 hasConcept C124101348 @default.
- W4308792280 hasConcept C13280743 @default.
- W4308792280 hasConcept C144133560 @default.
- W4308792280 hasConcept C154945302 @default.
- W4308792280 hasConcept C15744967 @default.
- W4308792280 hasConcept C162853370 @default.
- W4308792280 hasConcept C170130773 @default.
- W4308792280 hasConcept C185798385 @default.
- W4308792280 hasConcept C202444582 @default.
- W4308792280 hasConcept C205649164 @default.
- W4308792280 hasConcept C2522767166 @default.
- W4308792280 hasConcept C2780586970 @default.
- W4308792280 hasConcept C33923547 @default.
- W4308792280 hasConcept C41008148 @default.
- W4308792280 hasConcept C55493867 @default.
- W4308792280 hasConcept C63479239 @default.
- W4308792280 hasConcept C77805123 @default.
- W4308792280 hasConcept C86251818 @default.
- W4308792280 hasConcept C86803240 @default.
- W4308792280 hasConcept C9652623 @default.
- W4308792280 hasConceptScore W4308792280C104317684 @default.
- W4308792280 hasConceptScore W4308792280C107457646 @default.
- W4308792280 hasConceptScore W4308792280C119857082 @default.
- W4308792280 hasConceptScore W4308792280C124101348 @default.
- W4308792280 hasConceptScore W4308792280C13280743 @default.