Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308796787> ?p ?o ?g. }
- W4308796787 endingPage "100332" @default.
- W4308796787 startingPage "100332" @default.
- W4308796787 abstract "Markers are increasingly being used for several high-throughput data analysis and experimental design tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving bulk gene expression data, and for selecting marker proteins in single-cell spatial proteomics studies. Most marker selection methods focus on differential expression (DE) analysis. Although such methods work well for data with a few non-overlapping marker sets, they are not appropriate for large atlas-size datasets where several cell types and tissues are considered. To address this, we define the phenotype cover (PC) problem for marker selection and present algorithms that can improve the discriminative power of marker sets. Analysis of these sets on several marker-selection tasks suggests that these methods can lead to solutions that accurately distinguish different phenotypes in the data." @default.
- W4308796787 created "2022-11-15" @default.
- W4308796787 creator A5013695358 @default.
- W4308796787 creator A5018039958 @default.
- W4308796787 creator A5046070068 @default.
- W4308796787 creator A5065673127 @default.
- W4308796787 creator A5078381067 @default.
- W4308796787 date "2022-11-01" @default.
- W4308796787 modified "2023-10-17" @default.
- W4308796787 title "Multiset multicover methods for discriminative marker selection" @default.
- W4308796787 cites W1577352482 @default.
- W4308796787 cites W1798966172 @default.
- W4308796787 cites W1965555277 @default.
- W4308796787 cites W1967767097 @default.
- W4308796787 cites W1979283544 @default.
- W4308796787 cites W1985658808 @default.
- W4308796787 cites W1985987855 @default.
- W4308796787 cites W1993597798 @default.
- W4308796787 cites W1995086037 @default.
- W4308796787 cites W2028094847 @default.
- W4308796787 cites W2028426093 @default.
- W4308796787 cites W2031970585 @default.
- W4308796787 cites W2033072655 @default.
- W4308796787 cites W2040924621 @default.
- W4308796787 cites W2055655674 @default.
- W4308796787 cites W2062989416 @default.
- W4308796787 cites W2065006357 @default.
- W4308796787 cites W2065594360 @default.
- W4308796787 cites W2070050178 @default.
- W4308796787 cites W2072026441 @default.
- W4308796787 cites W2092939357 @default.
- W4308796787 cites W2101449057 @default.
- W4308796787 cites W2117453819 @default.
- W4308796787 cites W2119387367 @default.
- W4308796787 cites W2120216197 @default.
- W4308796787 cites W2130410032 @default.
- W4308796787 cites W2132083787 @default.
- W4308796787 cites W2142594886 @default.
- W4308796787 cites W2146950091 @default.
- W4308796787 cites W2154053567 @default.
- W4308796787 cites W2157054705 @default.
- W4308796787 cites W2158485828 @default.
- W4308796787 cites W2158549544 @default.
- W4308796787 cites W2170346276 @default.
- W4308796787 cites W2172280209 @default.
- W4308796787 cites W2176739617 @default.
- W4308796787 cites W2197846911 @default.
- W4308796787 cites W2336153715 @default.
- W4308796787 cites W2523369352 @default.
- W4308796787 cites W2526262591 @default.
- W4308796787 cites W2766959028 @default.
- W4308796787 cites W2767669578 @default.
- W4308796787 cites W2799669931 @default.
- W4308796787 cites W2800392236 @default.
- W4308796787 cites W2894687190 @default.
- W4308796787 cites W2897099802 @default.
- W4308796787 cites W2902647266 @default.
- W4308796787 cites W2914017661 @default.
- W4308796787 cites W2914451825 @default.
- W4308796787 cites W2922020904 @default.
- W4308796787 cites W2922106290 @default.
- W4308796787 cites W2949238013 @default.
- W4308796787 cites W2953866345 @default.
- W4308796787 cites W2964507182 @default.
- W4308796787 cites W2968096654 @default.
- W4308796787 cites W3009288574 @default.
- W4308796787 cites W3041062936 @default.
- W4308796787 cites W3094585864 @default.
- W4308796787 cites W3112976705 @default.
- W4308796787 cites W3131383906 @default.
- W4308796787 cites W3160698231 @default.
- W4308796787 cites W3212552860 @default.
- W4308796787 cites W4213108508 @default.
- W4308796787 cites W4236137412 @default.
- W4308796787 doi "https://doi.org/10.1016/j.crmeth.2022.100332" @default.
- W4308796787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36452867" @default.
- W4308796787 hasPublicationYear "2022" @default.
- W4308796787 type Work @default.
- W4308796787 citedByCount "0" @default.
- W4308796787 crossrefType "journal-article" @default.
- W4308796787 hasAuthorship W4308796787A5013695358 @default.
- W4308796787 hasAuthorship W4308796787A5018039958 @default.
- W4308796787 hasAuthorship W4308796787A5046070068 @default.
- W4308796787 hasAuthorship W4308796787A5065673127 @default.
- W4308796787 hasAuthorship W4308796787A5078381067 @default.
- W4308796787 hasBestOaLocation W43087967871 @default.
- W4308796787 hasConcept C114614502 @default.
- W4308796787 hasConcept C124101348 @default.
- W4308796787 hasConcept C148483581 @default.
- W4308796787 hasConcept C154945302 @default.
- W4308796787 hasConcept C2779623528 @default.
- W4308796787 hasConcept C33923547 @default.
- W4308796787 hasConcept C41008148 @default.
- W4308796787 hasConcept C70721500 @default.
- W4308796787 hasConcept C81917197 @default.
- W4308796787 hasConcept C86803240 @default.
- W4308796787 hasConcept C97931131 @default.
- W4308796787 hasConceptScore W4308796787C114614502 @default.