Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308797445> ?p ?o ?g. }
- W4308797445 endingPage "103544" @default.
- W4308797445 startingPage "103544" @default.
- W4308797445 abstract "Atrial fibrillation is a common cardiac arrhythmia event, potentially leading to strokes and thrombosis, diagnosable by means of an electrocardiographic (ECG) exam where the patient’s heart activity is monitored continuously for several hours. The recent advances in technology have led to the development of several telemedicine applications where patients monitoring is performed in a real-time, remote fashion. Furthermore, artificial intelligence has risen as a powerful instrument for the reliable detection of heart rhythm abnormalities, and the realization of healthcare networks would allow the prompt achievement of this task. One of the challenges in remote monitoring concerns the development of signal processing algorithms tailored to data traffic resources of an healthcare network and fitting for the involved nodes hardware/software capabilities. In this direction, we present a novel MUlti-lead Sub-beat ECG (MUSE) based technique for atrial fibrillation detection using machine learning. MUSE relies on a flexible and customizable framework, allowing the exploitation of edge computing principles to conveniently distribute the signal processing effort among different network nodes and optimize the data traffic flow as well. The proposed algorithm for atrial fibrillation detection is based on a robust principal component analysis performed on the sub-beats identified on the ECG signal coming from one or more leads. Then, the investigated signal and a subject-dependent physiological heartbeat pattern are matched to extract several metrics that drive the final ECG classification. Tests performed on public datasets and on a real Holter record demonstrate the high reliability provided by MUSE and, differently from other schemes proposed in the literature, a low sensitivity to the ECG signal quality. Moreover, the restrained computational effort required for signal processing makes MUSE perfectly tailored to the implementation in a remote healthcare network." @default.
- W4308797445 created "2022-11-15" @default.
- W4308797445 creator A5014008036 @default.
- W4308797445 creator A5022341678 @default.
- W4308797445 creator A5037476254 @default.
- W4308797445 creator A5053640493 @default.
- W4308797445 creator A5065940455 @default.
- W4308797445 creator A5073254556 @default.
- W4308797445 date "2023-03-01" @default.
- W4308797445 modified "2023-09-30" @default.
- W4308797445 title "MUSE: MUlti-lead Sub-beat ECG for remote AI based atrial fibrillation detection" @default.
- W4308797445 cites W1539726260 @default.
- W4308797445 cites W1554695906 @default.
- W4308797445 cites W1977380781 @default.
- W4308797445 cites W1986077389 @default.
- W4308797445 cites W2087725530 @default.
- W4308797445 cites W2094104929 @default.
- W4308797445 cites W2094144838 @default.
- W4308797445 cites W2313797383 @default.
- W4308797445 cites W2474138402 @default.
- W4308797445 cites W2605145111 @default.
- W4308797445 cites W2609696371 @default.
- W4308797445 cites W2790695256 @default.
- W4308797445 cites W2792396409 @default.
- W4308797445 cites W2802585315 @default.
- W4308797445 cites W2802707067 @default.
- W4308797445 cites W2886466686 @default.
- W4308797445 cites W2887119478 @default.
- W4308797445 cites W2888456553 @default.
- W4308797445 cites W2890949153 @default.
- W4308797445 cites W2894994225 @default.
- W4308797445 cites W2901522334 @default.
- W4308797445 cites W2911986109 @default.
- W4308797445 cites W2919302119 @default.
- W4308797445 cites W2966850485 @default.
- W4308797445 cites W2973047679 @default.
- W4308797445 cites W2982983009 @default.
- W4308797445 cites W2993062397 @default.
- W4308797445 cites W2996959172 @default.
- W4308797445 cites W3010700465 @default.
- W4308797445 cites W3023211159 @default.
- W4308797445 cites W3027572331 @default.
- W4308797445 cites W3032108578 @default.
- W4308797445 cites W3033279374 @default.
- W4308797445 cites W3035621222 @default.
- W4308797445 cites W3037422146 @default.
- W4308797445 cites W3092441635 @default.
- W4308797445 cites W3093542640 @default.
- W4308797445 cites W3096328183 @default.
- W4308797445 cites W3099657484 @default.
- W4308797445 cites W3113288818 @default.
- W4308797445 cites W3134859729 @default.
- W4308797445 cites W3138143431 @default.
- W4308797445 cites W3157160093 @default.
- W4308797445 cites W3160722243 @default.
- W4308797445 cites W3166902960 @default.
- W4308797445 cites W3195023532 @default.
- W4308797445 cites W3198337268 @default.
- W4308797445 cites W3210246417 @default.
- W4308797445 cites W4206338324 @default.
- W4308797445 cites W4220808022 @default.
- W4308797445 cites W4226287143 @default.
- W4308797445 cites W4229075671 @default.
- W4308797445 cites W4280644700 @default.
- W4308797445 cites W4281658627 @default.
- W4308797445 cites W4287511841 @default.
- W4308797445 cites W759596803 @default.
- W4308797445 doi "https://doi.org/10.1016/j.jnca.2022.103544" @default.
- W4308797445 hasPublicationYear "2023" @default.
- W4308797445 type Work @default.
- W4308797445 citedByCount "0" @default.
- W4308797445 crossrefType "journal-article" @default.
- W4308797445 hasAuthorship W4308797445A5014008036 @default.
- W4308797445 hasAuthorship W4308797445A5022341678 @default.
- W4308797445 hasAuthorship W4308797445A5037476254 @default.
- W4308797445 hasAuthorship W4308797445A5053640493 @default.
- W4308797445 hasAuthorship W4308797445A5065940455 @default.
- W4308797445 hasAuthorship W4308797445A5073254556 @default.
- W4308797445 hasConcept C108583219 @default.
- W4308797445 hasConcept C13852961 @default.
- W4308797445 hasConcept C154945302 @default.
- W4308797445 hasConcept C164705383 @default.
- W4308797445 hasConcept C2779161974 @default.
- W4308797445 hasConcept C2988455589 @default.
- W4308797445 hasConcept C38652104 @default.
- W4308797445 hasConcept C41008148 @default.
- W4308797445 hasConcept C71924100 @default.
- W4308797445 hasConcept C79403827 @default.
- W4308797445 hasConceptScore W4308797445C108583219 @default.
- W4308797445 hasConceptScore W4308797445C13852961 @default.
- W4308797445 hasConceptScore W4308797445C154945302 @default.
- W4308797445 hasConceptScore W4308797445C164705383 @default.
- W4308797445 hasConceptScore W4308797445C2779161974 @default.
- W4308797445 hasConceptScore W4308797445C2988455589 @default.
- W4308797445 hasConceptScore W4308797445C38652104 @default.
- W4308797445 hasConceptScore W4308797445C41008148 @default.
- W4308797445 hasConceptScore W4308797445C71924100 @default.
- W4308797445 hasConceptScore W4308797445C79403827 @default.