Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308804787> ?p ?o ?g. }
- W4308804787 abstract "Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, monitoring, and ground motion analyses. A typical step in analyzing Noise Cross-correlation Functions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal quality. Spurious NCFs could contaminate the stack, degrade its quality, and limit its use. Many methods have been developed to improve the stacking of coherent waveforms, including earthquake waveforms, receiver functions, and NCFs. This study systematically evaluates and compares the performance of eight stacking methods, including arithmetic mean or linear stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time-frequency phase-weighted stacking, $N^{th}$-root stacking, and averaging after applying an adaptive covariance filter. Our results demonstrate that, in most cases, all methods can retrieve clear ballistic or first arrivals. However, they yield significant differences in preserving the phase and amplitude information. This study provides a practical guide for choosing the optimal stacking method for specific research applications in ambient noise seismology. We evaluate the performance using multiple onshore and offshore seismic arrays in the Pacific Northwest region. We compare these stacking methods for NCFs calculated from raw ambient noise (referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization method (referred to as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios, phase dispersion images, convergence rate, temporal changes in the ballistic and coda waves, relative amplitude decays with distance, and computational time. We show that robust stacking is the best choice for all applications (velocity tomography, monitoring, and attenuation studies) using Raw NCFs. For applications using One-bit NCFs, all methods but phase-weighted, time-frequency phase-weighted, and $N^{th}$-root stacking are good choices for seismic velocity tomography. Linear, robust, and selective stacking methods are all equally appropriate choices when using One-bit NCFs for monitoring applications. For applications relying on accurate relative amplitudes, both the robust and cluster stacking methods perform well with One-bit NCFs. The evaluations in this study can be generalized to a broad range of time-series analysis that utilizes data coherence to perform ensemble stacking. Another contribution of this study is the accompanying open-source software, which can be used for general purposes in time-series stacking." @default.
- W4308804787 created "2022-11-15" @default.
- W4308804787 creator A5009626994 @default.
- W4308804787 creator A5027819799 @default.
- W4308804787 creator A5043790311 @default.
- W4308804787 creator A5059767849 @default.
- W4308804787 creator A5065492573 @default.
- W4308804787 creator A5076206709 @default.
- W4308804787 date "2022-11-11" @default.
- W4308804787 modified "2023-09-27" @default.
- W4308804787 title "Optimal Stacking of Noise Cross-Correlation Functions" @default.
- W4308804787 cites W1583639331 @default.
- W4308804787 cites W1824014603 @default.
- W4308804787 cites W1973551891 @default.
- W4308804787 cites W1981798449 @default.
- W4308804787 cites W1986754283 @default.
- W4308804787 cites W1991265582 @default.
- W4308804787 cites W1994594371 @default.
- W4308804787 cites W2017322542 @default.
- W4308804787 cites W2024551209 @default.
- W4308804787 cites W2030157763 @default.
- W4308804787 cites W2044678763 @default.
- W4308804787 cites W2048574647 @default.
- W4308804787 cites W2053941150 @default.
- W4308804787 cites W2060121888 @default.
- W4308804787 cites W2063218711 @default.
- W4308804787 cites W2065126285 @default.
- W4308804787 cites W2075898568 @default.
- W4308804787 cites W2103068583 @default.
- W4308804787 cites W2106632637 @default.
- W4308804787 cites W2112393517 @default.
- W4308804787 cites W2133492418 @default.
- W4308804787 cites W2136108029 @default.
- W4308804787 cites W2149870276 @default.
- W4308804787 cites W2160721328 @default.
- W4308804787 cites W2164042589 @default.
- W4308804787 cites W2255963030 @default.
- W4308804787 cites W2280532122 @default.
- W4308804787 cites W2295066318 @default.
- W4308804787 cites W2393321673 @default.
- W4308804787 cites W2606039870 @default.
- W4308804787 cites W2733642879 @default.
- W4308804787 cites W2739238049 @default.
- W4308804787 cites W2759750423 @default.
- W4308804787 cites W2761065641 @default.
- W4308804787 cites W2805755877 @default.
- W4308804787 cites W2809377281 @default.
- W4308804787 cites W2906696382 @default.
- W4308804787 cites W2926083428 @default.
- W4308804787 cites W2963355905 @default.
- W4308804787 cites W2964064095 @default.
- W4308804787 cites W2990122487 @default.
- W4308804787 cites W2999462424 @default.
- W4308804787 cites W3014736419 @default.
- W4308804787 cites W3073722309 @default.
- W4308804787 cites W3112412506 @default.
- W4308804787 cites W3126628284 @default.
- W4308804787 cites W3152810023 @default.
- W4308804787 cites W3165337883 @default.
- W4308804787 cites W3181213380 @default.
- W4308804787 cites W3183948773 @default.
- W4308804787 cites W3206391518 @default.
- W4308804787 cites W4210762703 @default.
- W4308804787 cites W4289711782 @default.
- W4308804787 doi "https://doi.org/10.1002/essoar.10511292.3" @default.
- W4308804787 hasPublicationYear "2022" @default.
- W4308804787 type Work @default.
- W4308804787 citedByCount "0" @default.
- W4308804787 crossrefType "posted-content" @default.
- W4308804787 hasAuthorship W4308804787A5009626994 @default.
- W4308804787 hasAuthorship W4308804787A5027819799 @default.
- W4308804787 hasAuthorship W4308804787A5043790311 @default.
- W4308804787 hasAuthorship W4308804787A5059767849 @default.
- W4308804787 hasAuthorship W4308804787A5065492573 @default.
- W4308804787 hasAuthorship W4308804787A5076206709 @default.
- W4308804787 hasBestOaLocation W43088047871 @default.
- W4308804787 hasConcept C115961682 @default.
- W4308804787 hasConcept C120665830 @default.
- W4308804787 hasConcept C121332964 @default.
- W4308804787 hasConcept C154945302 @default.
- W4308804787 hasConcept C180205008 @default.
- W4308804787 hasConcept C24890656 @default.
- W4308804787 hasConcept C33347731 @default.
- W4308804787 hasConcept C41008148 @default.
- W4308804787 hasConcept C46141821 @default.
- W4308804787 hasConcept C99498987 @default.
- W4308804787 hasConceptScore W4308804787C115961682 @default.
- W4308804787 hasConceptScore W4308804787C120665830 @default.
- W4308804787 hasConceptScore W4308804787C121332964 @default.
- W4308804787 hasConceptScore W4308804787C154945302 @default.
- W4308804787 hasConceptScore W4308804787C180205008 @default.
- W4308804787 hasConceptScore W4308804787C24890656 @default.
- W4308804787 hasConceptScore W4308804787C33347731 @default.
- W4308804787 hasConceptScore W4308804787C41008148 @default.
- W4308804787 hasConceptScore W4308804787C46141821 @default.
- W4308804787 hasConceptScore W4308804787C99498987 @default.
- W4308804787 hasLocation W43088047871 @default.
- W4308804787 hasOpenAccess W4308804787 @default.
- W4308804787 hasPrimaryLocation W43088047871 @default.
- W4308804787 hasRelatedWork W1970892967 @default.