Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308806449> ?p ?o ?g. }
- W4308806449 endingPage "100631" @default.
- W4308806449 startingPage "100631" @default.
- W4308806449 abstract "Boolean functions, and networks thereof, are useful for analysis of complex data systems, including from biological systems, bioinformatics, decision making, medical fields, and finance. However, automated learning of a Boolean networked function, from data, is a challenging task due in part to the large number of unknown structures of the network and the underlying functions. In this paper, we develop a new information theoretic methodology, called Boolean optimal causation entropy, that we show is significantly more efficient than previous approaches. Our method is computationally efficient and also resilient to noise. Furthermore, it allows for selection of features that best explains the process, described as a networked Boolean function reduced-order model. We highlight our method to the feature selection in several real-world examples: (1) diagnosis of urinary diseases, (2) cardiac single proton emission computed tomography diagnosis, (3) informative positions in the game Tic-Tac-Toe, and (4) risk causality analysis of loans in default status." @default.
- W4308806449 created "2022-11-15" @default.
- W4308806449 creator A5003961936 @default.
- W4308806449 creator A5004502095 @default.
- W4308806449 creator A5062731097 @default.
- W4308806449 date "2022-11-01" @default.
- W4308806449 modified "2023-10-01" @default.
- W4308806449 title "Data-driven learning of Boolean networks and functions by optimal causation entropy principle" @default.
- W4308806449 cites W1270845237 @default.
- W4308806449 cites W1481919380 @default.
- W4308806449 cites W1600339875 @default.
- W4308806449 cites W186890633 @default.
- W4308806449 cites W1994665850 @default.
- W4308806449 cites W2012043851 @default.
- W4308806449 cites W2028038938 @default.
- W4308806449 cites W2035104280 @default.
- W4308806449 cites W2042996958 @default.
- W4308806449 cites W2053961182 @default.
- W4308806449 cites W2065016221 @default.
- W4308806449 cites W2084757087 @default.
- W4308806449 cites W2091847893 @default.
- W4308806449 cites W2095871248 @default.
- W4308806449 cites W2107762303 @default.
- W4308806449 cites W2124278065 @default.
- W4308806449 cites W2128804044 @default.
- W4308806449 cites W2129159585 @default.
- W4308806449 cites W2131987814 @default.
- W4308806449 cites W2153620565 @default.
- W4308806449 cites W2159402338 @default.
- W4308806449 cites W2416340783 @default.
- W4308806449 cites W2519842263 @default.
- W4308806449 cites W2535580307 @default.
- W4308806449 cites W2576119444 @default.
- W4308806449 cites W2993383518 @default.
- W4308806449 cites W816410171 @default.
- W4308806449 doi "https://doi.org/10.1016/j.patter.2022.100631" @default.
- W4308806449 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36419440" @default.
- W4308806449 hasPublicationYear "2022" @default.
- W4308806449 type Work @default.
- W4308806449 citedByCount "1" @default.
- W4308806449 countsByYear W43088064492022 @default.
- W4308806449 crossrefType "journal-article" @default.
- W4308806449 hasAuthorship W4308806449A5003961936 @default.
- W4308806449 hasAuthorship W4308806449A5004502095 @default.
- W4308806449 hasAuthorship W4308806449A5062731097 @default.
- W4308806449 hasBestOaLocation W43088064491 @default.
- W4308806449 hasConcept C106301342 @default.
- W4308806449 hasConcept C111472728 @default.
- W4308806449 hasConcept C11413529 @default.
- W4308806449 hasConcept C119857082 @default.
- W4308806449 hasConcept C121332964 @default.
- W4308806449 hasConcept C134444547 @default.
- W4308806449 hasConcept C138885662 @default.
- W4308806449 hasConcept C154945302 @default.
- W4308806449 hasConcept C166151441 @default.
- W4308806449 hasConcept C17744445 @default.
- W4308806449 hasConcept C187455244 @default.
- W4308806449 hasConcept C199539241 @default.
- W4308806449 hasConcept C2781170535 @default.
- W4308806449 hasConcept C41008148 @default.
- W4308806449 hasConcept C62520636 @default.
- W4308806449 hasConcept C64357122 @default.
- W4308806449 hasConcept C75553542 @default.
- W4308806449 hasConcept C80444323 @default.
- W4308806449 hasConceptScore W4308806449C106301342 @default.
- W4308806449 hasConceptScore W4308806449C111472728 @default.
- W4308806449 hasConceptScore W4308806449C11413529 @default.
- W4308806449 hasConceptScore W4308806449C119857082 @default.
- W4308806449 hasConceptScore W4308806449C121332964 @default.
- W4308806449 hasConceptScore W4308806449C134444547 @default.
- W4308806449 hasConceptScore W4308806449C138885662 @default.
- W4308806449 hasConceptScore W4308806449C154945302 @default.
- W4308806449 hasConceptScore W4308806449C166151441 @default.
- W4308806449 hasConceptScore W4308806449C17744445 @default.
- W4308806449 hasConceptScore W4308806449C187455244 @default.
- W4308806449 hasConceptScore W4308806449C199539241 @default.
- W4308806449 hasConceptScore W4308806449C2781170535 @default.
- W4308806449 hasConceptScore W4308806449C41008148 @default.
- W4308806449 hasConceptScore W4308806449C62520636 @default.
- W4308806449 hasConceptScore W4308806449C64357122 @default.
- W4308806449 hasConceptScore W4308806449C75553542 @default.
- W4308806449 hasConceptScore W4308806449C80444323 @default.
- W4308806449 hasFunder F4320306164 @default.
- W4308806449 hasFunder F4320338281 @default.
- W4308806449 hasIssue "11" @default.
- W4308806449 hasLocation W43088064491 @default.
- W4308806449 hasLocation W43088064492 @default.
- W4308806449 hasLocation W43088064493 @default.
- W4308806449 hasOpenAccess W4308806449 @default.
- W4308806449 hasPrimaryLocation W43088064491 @default.
- W4308806449 hasRelatedWork W1990123009 @default.
- W4308806449 hasRelatedWork W2030417846 @default.
- W4308806449 hasRelatedWork W2131484867 @default.
- W4308806449 hasRelatedWork W2289022454 @default.
- W4308806449 hasRelatedWork W2762690992 @default.
- W4308806449 hasRelatedWork W3013663607 @default.
- W4308806449 hasRelatedWork W3173941606 @default.
- W4308806449 hasRelatedWork W3183599949 @default.