Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308808788> ?p ?o ?g. }
- W4308808788 endingPage "29" @default.
- W4308808788 startingPage "1" @default.
- W4308808788 abstract "This work aims to discuss and compare the inherent essence of different machine learning algorithms for landslide susceptibility models (LSMs), which is of great significance for accurate prevention and detection of landslides. A geospatial database was established in GIS based on various factors of topography, geological conditions, environmental conditions and human activities, including 22 conditioning factors and 866 historical landslides. As for model algorithms, ANN is an operation model composed of a large number of interconnected nodes, and RF refers to an ensemble method of separately trained binary decision trees. Two algorithms were adopted in this paper for landslide susceptibility models. Meantime, an interpretable algorithm SHAP was used to gain insight into essential decision mechanism of LSMs. The result showed that RF model exhibits better stability and robustness. The global interpretation shows that the same landslide moderators play different roles in different models. The local interpretation shows that for the same evaluation unit different models give different decision mechanisms, and the local interpretation can be combined with the field survey, which can provide a comprehensive framework for assessing the assigned landslide." @default.
- W4308808788 created "2022-11-15" @default.
- W4308808788 creator A5008568712 @default.
- W4308808788 creator A5020688619 @default.
- W4308808788 creator A5050324799 @default.
- W4308808788 creator A5052065564 @default.
- W4308808788 creator A5053418097 @default.
- W4308808788 creator A5059839103 @default.
- W4308808788 creator A5087139878 @default.
- W4308808788 creator A5090162220 @default.
- W4308808788 date "2022-11-17" @default.
- W4308808788 modified "2023-10-02" @default.
- W4308808788 title "Essential insights into decision mechanism of landslide susceptibility mapping based on different machine learning models" @default.
- W4308808788 cites W1971095756 @default.
- W4308808788 cites W2017145427 @default.
- W4308808788 cites W2028124403 @default.
- W4308808788 cites W2032307057 @default.
- W4308808788 cites W2036678647 @default.
- W4308808788 cites W2040990873 @default.
- W4308808788 cites W2053280690 @default.
- W4308808788 cites W2054512946 @default.
- W4308808788 cites W2086327026 @default.
- W4308808788 cites W2128964295 @default.
- W4308808788 cites W2144314902 @default.
- W4308808788 cites W2199953169 @default.
- W4308808788 cites W2538694149 @default.
- W4308808788 cites W2606572359 @default.
- W4308808788 cites W2729462021 @default.
- W4308808788 cites W2731695662 @default.
- W4308808788 cites W2753501224 @default.
- W4308808788 cites W2773213923 @default.
- W4308808788 cites W2793831793 @default.
- W4308808788 cites W2807686542 @default.
- W4308808788 cites W2882999202 @default.
- W4308808788 cites W2889223999 @default.
- W4308808788 cites W2901225872 @default.
- W4308808788 cites W2912059729 @default.
- W4308808788 cites W2915483120 @default.
- W4308808788 cites W2970420435 @default.
- W4308808788 cites W2972972597 @default.
- W4308808788 cites W2974206351 @default.
- W4308808788 cites W2984020251 @default.
- W4308808788 cites W2984847801 @default.
- W4308808788 cites W3014673353 @default.
- W4308808788 cites W3015779580 @default.
- W4308808788 cites W3035067366 @default.
- W4308808788 cites W3038187968 @default.
- W4308808788 cites W3044360060 @default.
- W4308808788 cites W3048285196 @default.
- W4308808788 cites W3049651666 @default.
- W4308808788 cites W3056808037 @default.
- W4308808788 cites W3091882851 @default.
- W4308808788 cites W3093260787 @default.
- W4308808788 cites W3111588349 @default.
- W4308808788 cites W3117712630 @default.
- W4308808788 cites W3135457784 @default.
- W4308808788 cites W3156850827 @default.
- W4308808788 cites W3159603761 @default.
- W4308808788 cites W3186061382 @default.
- W4308808788 cites W4223610633 @default.
- W4308808788 cites W4224252463 @default.
- W4308808788 cites W4280525102 @default.
- W4308808788 cites W4281565799 @default.
- W4308808788 cites W4289525408 @default.
- W4308808788 cites W4289527478 @default.
- W4308808788 doi "https://doi.org/10.1080/10106049.2022.2146763" @default.
- W4308808788 hasPublicationYear "2022" @default.
- W4308808788 type Work @default.
- W4308808788 citedByCount "5" @default.
- W4308808788 countsByYear W43088087882023 @default.
- W4308808788 crossrefType "journal-article" @default.
- W4308808788 hasAuthorship W4308808788A5008568712 @default.
- W4308808788 hasAuthorship W4308808788A5020688619 @default.
- W4308808788 hasAuthorship W4308808788A5050324799 @default.
- W4308808788 hasAuthorship W4308808788A5052065564 @default.
- W4308808788 hasAuthorship W4308808788A5053418097 @default.
- W4308808788 hasAuthorship W4308808788A5059839103 @default.
- W4308808788 hasAuthorship W4308808788A5087139878 @default.
- W4308808788 hasAuthorship W4308808788A5090162220 @default.
- W4308808788 hasBestOaLocation W43088087881 @default.
- W4308808788 hasConcept C104317684 @default.
- W4308808788 hasConcept C112972136 @default.
- W4308808788 hasConcept C119857082 @default.
- W4308808788 hasConcept C124101348 @default.
- W4308808788 hasConcept C127313418 @default.
- W4308808788 hasConcept C154945302 @default.
- W4308808788 hasConcept C185592680 @default.
- W4308808788 hasConcept C186295008 @default.
- W4308808788 hasConcept C187320778 @default.
- W4308808788 hasConcept C199360897 @default.
- W4308808788 hasConcept C202444582 @default.
- W4308808788 hasConcept C205649164 @default.
- W4308808788 hasConcept C33923547 @default.
- W4308808788 hasConcept C41008148 @default.
- W4308808788 hasConcept C527412718 @default.
- W4308808788 hasConcept C55493867 @default.
- W4308808788 hasConcept C58640448 @default.
- W4308808788 hasConcept C63479239 @default.