Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308835287> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4308835287 abstract "The densest k-subgraph (DkS) problem (i.e. find a size k subgraph with maximum number of edges), is one of the notorious problems in approximation algorithms. There is a significant gap between known upper and lower bounds for DkS: the current best algorithm gives an ~ O(n^{1/4}) approximation, while even showing a small constant factor hardness requires significantly stronger assumptions than P != NP. In addition to interest in designing better algorithms, a number of recent results have exploited the conjectured hardness of densest k-subgraph and its variants. Thus, understanding the approximability of DkS is an important challenge. In this work, we give evidence for the hardness of approximating DkS within polynomial factors. Specifically, we expose the limitations of strong semidefinite programs from SDP hierarchies in solving densest k-subgraph. Our results include: * A lower bound of Omega(n^{1/4}/log^3 n) on the integrality gap for Omega(log n/log log n) rounds of the Sherali-Adams relaxation for DkS. This also holds for the relaxation obtained from Sherali-Adams with an added SDP constraint. Our gap instances are in fact Erdos-Renyi random graphs. * For every epsilon > 0, a lower bound of n^{2/53-eps} on the integrality gap of n^{Omega(eps)} rounds of the Lasserre SDP relaxation for DkS, and an n^{Omega_eps(1)} gap for n^{1-eps} rounds. Our construction proceeds via a reduction from random instances of a certain Max-CSP over large domains. In the absence of inapproximability results for DkS, our results show that even the most powerful SDPs are unable to beat a factor of n^{Omega(1)}, and in fact even improving the best known n^{1/4} factor is a barrier for current techniques." @default.
- W4308835287 created "2022-11-17" @default.
- W4308835287 creator A5014414126 @default.
- W4308835287 creator A5034478811 @default.
- W4308835287 creator A5068388812 @default.
- W4308835287 creator A5071016611 @default.
- W4308835287 creator A5081431077 @default.
- W4308835287 date "2011-10-06" @default.
- W4308835287 modified "2023-09-27" @default.
- W4308835287 title "Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph" @default.
- W4308835287 doi "https://doi.org/10.48550/arxiv.1110.1360" @default.
- W4308835287 hasPublicationYear "2011" @default.
- W4308835287 type Work @default.
- W4308835287 citedByCount "0" @default.
- W4308835287 crossrefType "posted-content" @default.
- W4308835287 hasAuthorship W4308835287A5014414126 @default.
- W4308835287 hasAuthorship W4308835287A5034478811 @default.
- W4308835287 hasAuthorship W4308835287A5068388812 @default.
- W4308835287 hasAuthorship W4308835287A5071016611 @default.
- W4308835287 hasAuthorship W4308835287A5081431077 @default.
- W4308835287 hasBestOaLocation W43088352871 @default.
- W4308835287 hasConcept C105795698 @default.
- W4308835287 hasConcept C114614502 @default.
- W4308835287 hasConcept C118615104 @default.
- W4308835287 hasConcept C121332964 @default.
- W4308835287 hasConcept C134306372 @default.
- W4308835287 hasConcept C148764684 @default.
- W4308835287 hasConcept C15744967 @default.
- W4308835287 hasConcept C195292467 @default.
- W4308835287 hasConcept C199622910 @default.
- W4308835287 hasConcept C2776029896 @default.
- W4308835287 hasConcept C2779557605 @default.
- W4308835287 hasConcept C33923547 @default.
- W4308835287 hasConcept C49937458 @default.
- W4308835287 hasConcept C62520636 @default.
- W4308835287 hasConcept C63553672 @default.
- W4308835287 hasConcept C77553402 @default.
- W4308835287 hasConcept C77805123 @default.
- W4308835287 hasConcept C90119067 @default.
- W4308835287 hasConceptScore W4308835287C105795698 @default.
- W4308835287 hasConceptScore W4308835287C114614502 @default.
- W4308835287 hasConceptScore W4308835287C118615104 @default.
- W4308835287 hasConceptScore W4308835287C121332964 @default.
- W4308835287 hasConceptScore W4308835287C134306372 @default.
- W4308835287 hasConceptScore W4308835287C148764684 @default.
- W4308835287 hasConceptScore W4308835287C15744967 @default.
- W4308835287 hasConceptScore W4308835287C195292467 @default.
- W4308835287 hasConceptScore W4308835287C199622910 @default.
- W4308835287 hasConceptScore W4308835287C2776029896 @default.
- W4308835287 hasConceptScore W4308835287C2779557605 @default.
- W4308835287 hasConceptScore W4308835287C33923547 @default.
- W4308835287 hasConceptScore W4308835287C49937458 @default.
- W4308835287 hasConceptScore W4308835287C62520636 @default.
- W4308835287 hasConceptScore W4308835287C63553672 @default.
- W4308835287 hasConceptScore W4308835287C77553402 @default.
- W4308835287 hasConceptScore W4308835287C77805123 @default.
- W4308835287 hasConceptScore W4308835287C90119067 @default.
- W4308835287 hasLocation W43088352871 @default.
- W4308835287 hasLocation W43088352872 @default.
- W4308835287 hasLocation W43088352873 @default.
- W4308835287 hasOpenAccess W4308835287 @default.
- W4308835287 hasPrimaryLocation W43088352871 @default.
- W4308835287 hasRelatedWork W1673132890 @default.
- W4308835287 hasRelatedWork W2100283019 @default.
- W4308835287 hasRelatedWork W2964080336 @default.
- W4308835287 hasRelatedWork W2965187759 @default.
- W4308835287 hasRelatedWork W3087231590 @default.
- W4308835287 hasRelatedWork W3164081298 @default.
- W4308835287 hasRelatedWork W4286233438 @default.
- W4308835287 hasRelatedWork W4288358475 @default.
- W4308835287 hasRelatedWork W4296603869 @default.
- W4308835287 hasRelatedWork W3115255814 @default.
- W4308835287 isParatext "false" @default.
- W4308835287 isRetracted "false" @default.
- W4308835287 workType "article" @default.