Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308843791> ?p ?o ?g. }
- W4308843791 abstract "Abstract The difficulty of feature extraction and the small sample size are two challenges in the field of mechanical fault diagnosis for a long time. Here we propose an intelligent mechanical fault diagnosis method for scenario with small sample datasets. This method can not only diagnose bearing faults but also gear faults, and has strong generalization performance. We use convolutional neural network to realize automatic feature extraction. Through sliding window scanning, one sample set is expanded to three sub-sample sets with different scales to meet the needs of deep learning training. Three convolutional networks are used to extract the features of the subsets respectively to ensure that their useful features are fully extracted. After feature extraction, the feature is reconstructed through feature splicing. Because of the unique advantages of SVM in dealing with small sample sets, we use SVM to classify the reconstructed features.We use the bearing data set collected by Case Western Reserve University in the United States, the bearing fault data set collected by Xi'an Jiaotong University in China, and the gearbox fault data collected by the University of Connecticut in the United States to conduct experiments. The experimental results show that the accuracy of training, validation and testing of the proposed method on the three data sets all reach 100%. This proves that our method can not only tackle the two challenges, but also has high fault diagnosis accuracy and strong generalization performance. It is hoped that our proposed method can contribute to the development of mechanical fault diagnosis." @default.
- W4308843791 created "2022-11-17" @default.
- W4308843791 creator A5005761783 @default.
- W4308843791 creator A5045825296 @default.
- W4308843791 creator A5048748291 @default.
- W4308843791 creator A5049026009 @default.
- W4308843791 creator A5054616765 @default.
- W4308843791 creator A5058685565 @default.
- W4308843791 creator A5062745950 @default.
- W4308843791 creator A5065043879 @default.
- W4308843791 date "2022-11-11" @default.
- W4308843791 modified "2023-09-27" @default.
- W4308843791 title "Research on an intelligent diagnosis method of mechanical faults for small sample data sets" @default.
- W4308843791 cites W1605077306 @default.
- W4308843791 cites W1790534215 @default.
- W4308843791 cites W1975063723 @default.
- W4308843791 cites W2049550263 @default.
- W4308843791 cites W2109255472 @default.
- W4308843791 cites W2156909104 @default.
- W4308843791 cites W2525635407 @default.
- W4308843791 cites W2562762876 @default.
- W4308843791 cites W2618530766 @default.
- W4308843791 cites W2744790985 @default.
- W4308843791 cites W2762841298 @default.
- W4308843791 cites W2794173054 @default.
- W4308843791 cites W2801457104 @default.
- W4308843791 cites W2898138731 @default.
- W4308843791 cites W2913725286 @default.
- W4308843791 cites W2916320715 @default.
- W4308843791 cites W2987140681 @default.
- W4308843791 cites W2988680220 @default.
- W4308843791 cites W3005789239 @default.
- W4308843791 cites W3021261417 @default.
- W4308843791 cites W3089332052 @default.
- W4308843791 cites W3092068739 @default.
- W4308843791 cites W4289656111 @default.
- W4308843791 cites W4304193987 @default.
- W4308843791 doi "https://doi.org/10.21203/rs.3.rs-2232577/v1" @default.
- W4308843791 hasPublicationYear "2022" @default.
- W4308843791 type Work @default.
- W4308843791 citedByCount "0" @default.
- W4308843791 crossrefType "posted-content" @default.
- W4308843791 hasAuthorship W4308843791A5005761783 @default.
- W4308843791 hasAuthorship W4308843791A5045825296 @default.
- W4308843791 hasAuthorship W4308843791A5048748291 @default.
- W4308843791 hasAuthorship W4308843791A5049026009 @default.
- W4308843791 hasAuthorship W4308843791A5054616765 @default.
- W4308843791 hasAuthorship W4308843791A5058685565 @default.
- W4308843791 hasAuthorship W4308843791A5062745950 @default.
- W4308843791 hasAuthorship W4308843791A5065043879 @default.
- W4308843791 hasBestOaLocation W43088437911 @default.
- W4308843791 hasConcept C119857082 @default.
- W4308843791 hasConcept C12267149 @default.
- W4308843791 hasConcept C124101348 @default.
- W4308843791 hasConcept C127313418 @default.
- W4308843791 hasConcept C134306372 @default.
- W4308843791 hasConcept C138885662 @default.
- W4308843791 hasConcept C153180895 @default.
- W4308843791 hasConcept C154945302 @default.
- W4308843791 hasConcept C165205528 @default.
- W4308843791 hasConcept C175551986 @default.
- W4308843791 hasConcept C177148314 @default.
- W4308843791 hasConcept C177264268 @default.
- W4308843791 hasConcept C185592680 @default.
- W4308843791 hasConcept C198531522 @default.
- W4308843791 hasConcept C199360897 @default.
- W4308843791 hasConcept C2776401178 @default.
- W4308843791 hasConcept C33923547 @default.
- W4308843791 hasConcept C41008148 @default.
- W4308843791 hasConcept C41895202 @default.
- W4308843791 hasConcept C43617362 @default.
- W4308843791 hasConcept C52622490 @default.
- W4308843791 hasConcept C58489278 @default.
- W4308843791 hasConcept C81363708 @default.
- W4308843791 hasConceptScore W4308843791C119857082 @default.
- W4308843791 hasConceptScore W4308843791C12267149 @default.
- W4308843791 hasConceptScore W4308843791C124101348 @default.
- W4308843791 hasConceptScore W4308843791C127313418 @default.
- W4308843791 hasConceptScore W4308843791C134306372 @default.
- W4308843791 hasConceptScore W4308843791C138885662 @default.
- W4308843791 hasConceptScore W4308843791C153180895 @default.
- W4308843791 hasConceptScore W4308843791C154945302 @default.
- W4308843791 hasConceptScore W4308843791C165205528 @default.
- W4308843791 hasConceptScore W4308843791C175551986 @default.
- W4308843791 hasConceptScore W4308843791C177148314 @default.
- W4308843791 hasConceptScore W4308843791C177264268 @default.
- W4308843791 hasConceptScore W4308843791C185592680 @default.
- W4308843791 hasConceptScore W4308843791C198531522 @default.
- W4308843791 hasConceptScore W4308843791C199360897 @default.
- W4308843791 hasConceptScore W4308843791C2776401178 @default.
- W4308843791 hasConceptScore W4308843791C33923547 @default.
- W4308843791 hasConceptScore W4308843791C41008148 @default.
- W4308843791 hasConceptScore W4308843791C41895202 @default.
- W4308843791 hasConceptScore W4308843791C43617362 @default.
- W4308843791 hasConceptScore W4308843791C52622490 @default.
- W4308843791 hasConceptScore W4308843791C58489278 @default.
- W4308843791 hasConceptScore W4308843791C81363708 @default.
- W4308843791 hasLocation W43088437911 @default.
- W4308843791 hasOpenAccess W4308843791 @default.
- W4308843791 hasPrimaryLocation W43088437911 @default.