Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308843887> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4308843887 abstract "Abstract Big data demands the cloud for storage, but organizations are not relying on the cloud, because of security and privacy reasons. When choosing the cloud for data storage, users worry about issues such as leakage of personal information, unauthorized user access and modification of data, and malicious behavior in cloud data access. Privacy leaks should be avoided during data analysis. Data integrity must be maintained to avoid data modification. Also need machine learning models to detect malicious activity patterns from users in the cloud to ensure data security. Therefore, big data requires technology that protects privacy and security with minimal investment of time and space. Hence approaches using anonymization, sanitization, integrity, and machine learning techniques are proposed. Anonymization can protect personal data from being disclosed upon receiving the data. The use of map-reduce along with anonymization reduces the computational overhead. Sanitization of type encryption/decryption with weighted fuzzy c-means clustering(WFCM) can protect privacy and security with less computation time. Elliptic curve with Diffie–Hellman (ECDH) algorithm is used to protect the integrity of the data with better accuracy than the other cryptosystem algorithms. To protect and safeguard the transactions in cloud applications, a novel solution using Machine Learning (ML) approach with Convolution Neural Networks and a support vector machine is employed. The efficiency of the classifier ability is measured using parameters such as precision, recall, and F-score. Therefore, all these techniques allow this research to protect the privacy and security of big data." @default.
- W4308843887 created "2022-11-17" @default.
- W4308843887 creator A5016427899 @default.
- W4308843887 creator A5070711923 @default.
- W4308843887 date "2022-11-11" @default.
- W4308843887 modified "2023-10-18" @default.
- W4308843887 title "Computationally Efficient Approaches for Privacy and Security of Big Data" @default.
- W4308843887 cites W2005430048 @default.
- W4308843887 cites W2037386159 @default.
- W4308843887 cites W2091794203 @default.
- W4308843887 cites W2101109743 @default.
- W4308843887 cites W2131715540 @default.
- W4308843887 cites W2149396347 @default.
- W4308843887 cites W2189529032 @default.
- W4308843887 cites W2316967260 @default.
- W4308843887 cites W2407215383 @default.
- W4308843887 cites W2563157938 @default.
- W4308843887 cites W2604604360 @default.
- W4308843887 cites W2793453010 @default.
- W4308843887 cites W3043071284 @default.
- W4308843887 doi "https://doi.org/10.21203/rs.3.rs-2240181/v1" @default.
- W4308843887 hasPublicationYear "2022" @default.
- W4308843887 type Work @default.
- W4308843887 citedByCount "0" @default.
- W4308843887 crossrefType "posted-content" @default.
- W4308843887 hasAuthorship W4308843887A5016427899 @default.
- W4308843887 hasAuthorship W4308843887A5070711923 @default.
- W4308843887 hasBestOaLocation W43088438871 @default.
- W4308843887 hasConcept C10511746 @default.
- W4308843887 hasConcept C111919701 @default.
- W4308843887 hasConcept C123201435 @default.
- W4308843887 hasConcept C124101348 @default.
- W4308843887 hasConcept C148730421 @default.
- W4308843887 hasConcept C184842701 @default.
- W4308843887 hasConcept C38652104 @default.
- W4308843887 hasConcept C41008148 @default.
- W4308843887 hasConcept C6295992 @default.
- W4308843887 hasConcept C75684735 @default.
- W4308843887 hasConcept C79974875 @default.
- W4308843887 hasConceptScore W4308843887C10511746 @default.
- W4308843887 hasConceptScore W4308843887C111919701 @default.
- W4308843887 hasConceptScore W4308843887C123201435 @default.
- W4308843887 hasConceptScore W4308843887C124101348 @default.
- W4308843887 hasConceptScore W4308843887C148730421 @default.
- W4308843887 hasConceptScore W4308843887C184842701 @default.
- W4308843887 hasConceptScore W4308843887C38652104 @default.
- W4308843887 hasConceptScore W4308843887C41008148 @default.
- W4308843887 hasConceptScore W4308843887C6295992 @default.
- W4308843887 hasConceptScore W4308843887C75684735 @default.
- W4308843887 hasConceptScore W4308843887C79974875 @default.
- W4308843887 hasLocation W43088438871 @default.
- W4308843887 hasOpenAccess W4308843887 @default.
- W4308843887 hasPrimaryLocation W43088438871 @default.
- W4308843887 hasRelatedWork W2289599439 @default.
- W4308843887 hasRelatedWork W2324831660 @default.
- W4308843887 hasRelatedWork W2550975892 @default.
- W4308843887 hasRelatedWork W2800638116 @default.
- W4308843887 hasRelatedWork W2883509087 @default.
- W4308843887 hasRelatedWork W2904847553 @default.
- W4308843887 hasRelatedWork W4324268361 @default.
- W4308843887 hasRelatedWork W4362605970 @default.
- W4308843887 hasRelatedWork W2181574667 @default.
- W4308843887 hasRelatedWork W2554599470 @default.
- W4308843887 isParatext "false" @default.
- W4308843887 isRetracted "false" @default.
- W4308843887 workType "article" @default.