Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308858731> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4308858731 endingPage "472" @default.
- W4308858731 startingPage "461" @default.
- W4308858731 abstract "Blood diagnosis is based on a visual examination of blood smears, which is usually a time-consuming and error-prone process. In order to overcome this challenge, image processing techniques are required to assist the clinical decision-making process. Leukemia is a form of cancer, which is distinguished by the abnormal generation of immature white blood cells (WBC) known as tumors. Generally, leukemia will affect the white blood cells present in the bone marrow and/or blood. Hence, developing a prompt, safe, and accurate leukemia diagnosis is critical. White blood cells are often examined under a blood smear microscope for diagnosis purpose. On the other hand, numerous machine learning algorithms have been developed to diagnose different diseases, e.g., leukemia, and to provide a high number of misclassification error rates. The proposed research study has implemented a deep learning algorithm to classify the microscopic images for white blood count analysis. The WBC differential system is divided into two modules: detection and segmentation. The detection module initially evaluated the green bone smear pictures, detecting all WBCs in red blood cells, platelets, counts, and so on. The obtained cells are then fed into a separate module. The segmentation module was divided into two pieces. Numerous cells, including crushed cells and degraded new cells, are identified at the earliest stage of leukemia diagnosis. The WBCs may then be computed and distributed to multi-class differentiation stage by using a convolutional neural network [CNN] technique." @default.
- W4308858731 created "2022-11-18" @default.
- W4308858731 creator A5002188623 @default.
- W4308858731 creator A5031926456 @default.
- W4308858731 creator A5033343466 @default.
- W4308858731 creator A5075552475 @default.
- W4308858731 date "2022-11-14" @default.
- W4308858731 modified "2023-10-15" @default.
- W4308858731 title "Diagnosis of Leukemia Based on White Blood Cell Classification" @default.
- W4308858731 cites W1980276039 @default.
- W4308858731 cites W2183341477 @default.
- W4308858731 cites W2762113702 @default.
- W4308858731 cites W2800128458 @default.
- W4308858731 cites W2806155925 @default.
- W4308858731 cites W2810323699 @default.
- W4308858731 cites W2917675508 @default.
- W4308858731 cites W3004227146 @default.
- W4308858731 cites W3013589844 @default.
- W4308858731 cites W3033209129 @default.
- W4308858731 doi "https://doi.org/10.1007/978-981-19-4960-9_36" @default.
- W4308858731 hasPublicationYear "2022" @default.
- W4308858731 type Work @default.
- W4308858731 citedByCount "0" @default.
- W4308858731 crossrefType "book-chapter" @default.
- W4308858731 hasAuthorship W4308858731A5002188623 @default.
- W4308858731 hasAuthorship W4308858731A5031926456 @default.
- W4308858731 hasAuthorship W4308858731A5033343466 @default.
- W4308858731 hasAuthorship W4308858731A5075552475 @default.
- W4308858731 hasConcept C142724271 @default.
- W4308858731 hasConcept C146357865 @default.
- W4308858731 hasConcept C151730666 @default.
- W4308858731 hasConcept C153180895 @default.
- W4308858731 hasConcept C154945302 @default.
- W4308858731 hasConcept C203014093 @default.
- W4308858731 hasConcept C2778048844 @default.
- W4308858731 hasConcept C2778461978 @default.
- W4308858731 hasConcept C2778488018 @default.
- W4308858731 hasConcept C2780007613 @default.
- W4308858731 hasConcept C3017819844 @default.
- W4308858731 hasConcept C41008148 @default.
- W4308858731 hasConcept C71924100 @default.
- W4308858731 hasConcept C81363708 @default.
- W4308858731 hasConcept C86803240 @default.
- W4308858731 hasConcept C89600930 @default.
- W4308858731 hasConceptScore W4308858731C142724271 @default.
- W4308858731 hasConceptScore W4308858731C146357865 @default.
- W4308858731 hasConceptScore W4308858731C151730666 @default.
- W4308858731 hasConceptScore W4308858731C153180895 @default.
- W4308858731 hasConceptScore W4308858731C154945302 @default.
- W4308858731 hasConceptScore W4308858731C203014093 @default.
- W4308858731 hasConceptScore W4308858731C2778048844 @default.
- W4308858731 hasConceptScore W4308858731C2778461978 @default.
- W4308858731 hasConceptScore W4308858731C2778488018 @default.
- W4308858731 hasConceptScore W4308858731C2780007613 @default.
- W4308858731 hasConceptScore W4308858731C3017819844 @default.
- W4308858731 hasConceptScore W4308858731C41008148 @default.
- W4308858731 hasConceptScore W4308858731C71924100 @default.
- W4308858731 hasConceptScore W4308858731C81363708 @default.
- W4308858731 hasConceptScore W4308858731C86803240 @default.
- W4308858731 hasConceptScore W4308858731C89600930 @default.
- W4308858731 hasLocation W43088587311 @default.
- W4308858731 hasOpenAccess W4308858731 @default.
- W4308858731 hasPrimaryLocation W43088587311 @default.
- W4308858731 hasRelatedWork W2042480534 @default.
- W4308858731 hasRelatedWork W2316586191 @default.
- W4308858731 hasRelatedWork W2369624160 @default.
- W4308858731 hasRelatedWork W2606416966 @default.
- W4308858731 hasRelatedWork W2767651786 @default.
- W4308858731 hasRelatedWork W2912288872 @default.
- W4308858731 hasRelatedWork W3005672384 @default.
- W4308858731 hasRelatedWork W3158513050 @default.
- W4308858731 hasRelatedWork W4200528772 @default.
- W4308858731 hasRelatedWork W564581980 @default.
- W4308858731 isParatext "false" @default.
- W4308858731 isRetracted "false" @default.
- W4308858731 workType "book-chapter" @default.