Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308873056> ?p ?o ?g. }
- W4308873056 endingPage "561" @default.
- W4308873056 startingPage "561" @default.
- W4308873056 abstract "The outbreak of COVID-19 (coronavirus disease 2019) has generated a large amount of spatiotemporal data. Using a knowledge graph can help to analyze the transmission relationship between cases and locate the transmission path of the pandemic, but researchers have paid little attention to the spatial relationships between geographical entities related to the pandemic. Therefore, we propose a method for constructing a pandemic situation knowledge graph of COVID-19 that considers spatial relationships. First, we created an ontology design of the pandemic data in which spatial relationships are considered. We then constructed a non-spatial relationships extraction model based on BERT and a spatial relationships extraction model based on spatial analysis theory. Second, taking the pandemic and geographic data of Guangzhou as an example, we modeled a pandemic corpus. We extracted entities and relationships based on this model, and we constructed a pandemic situation knowledge graph that considers spatial relationships. Finally, we verified the feasibility of using this method as a visualization exploratory tool in the analysis of spatial characteristics, pandemic development situation, case sources, and case relationships analysis of pandemic-related areas." @default.
- W4308873056 created "2022-11-18" @default.
- W4308873056 creator A5062703882 @default.
- W4308873056 creator A5064244067 @default.
- W4308873056 creator A5089132290 @default.
- W4308873056 creator A5090640053 @default.
- W4308873056 date "2022-11-09" @default.
- W4308873056 modified "2023-10-17" @default.
- W4308873056 title "Construction of a COVID-19 Pandemic Situation Knowledge Graph Considering Spatial Relationships: A Case Study of Guangzhou, China" @default.
- W4308873056 cites W1489949474 @default.
- W4308873056 cites W1551842868 @default.
- W4308873056 cites W1608787345 @default.
- W4308873056 cites W1751031993 @default.
- W4308873056 cites W2026531504 @default.
- W4308873056 cites W2030408698 @default.
- W4308873056 cites W2033522852 @default.
- W4308873056 cites W2039914071 @default.
- W4308873056 cites W2040348902 @default.
- W4308873056 cites W2042037135 @default.
- W4308873056 cites W2046079134 @default.
- W4308873056 cites W2053929841 @default.
- W4308873056 cites W2062672310 @default.
- W4308873056 cites W2081076738 @default.
- W4308873056 cites W2133039566 @default.
- W4308873056 cites W2147166346 @default.
- W4308873056 cites W2161160262 @default.
- W4308873056 cites W2165232124 @default.
- W4308873056 cites W2884040453 @default.
- W4308873056 cites W2931252866 @default.
- W4308873056 cites W2974184401 @default.
- W4308873056 cites W3001118548 @default.
- W4308873056 cites W3014546836 @default.
- W4308873056 cites W3014680059 @default.
- W4308873056 cites W3015759376 @default.
- W4308873056 cites W3019529372 @default.
- W4308873056 cites W3022898487 @default.
- W4308873056 cites W3029704229 @default.
- W4308873056 cites W3035863525 @default.
- W4308873056 cites W3041467169 @default.
- W4308873056 cites W3041852941 @default.
- W4308873056 cites W3044700432 @default.
- W4308873056 cites W3113043360 @default.
- W4308873056 cites W3121430869 @default.
- W4308873056 cites W3171078647 @default.
- W4308873056 cites W3171533979 @default.
- W4308873056 cites W3191244417 @default.
- W4308873056 cites W3197843743 @default.
- W4308873056 cites W3203017757 @default.
- W4308873056 cites W3206335923 @default.
- W4308873056 cites W3217578969 @default.
- W4308873056 cites W4205206840 @default.
- W4308873056 cites W4205434108 @default.
- W4308873056 cites W4206347609 @default.
- W4308873056 cites W4206777097 @default.
- W4308873056 cites W4223630047 @default.
- W4308873056 cites W4226258354 @default.
- W4308873056 cites W4226369335 @default.
- W4308873056 cites W4226370857 @default.
- W4308873056 cites W4280512269 @default.
- W4308873056 cites W4284962797 @default.
- W4308873056 cites W4285404855 @default.
- W4308873056 cites W4288490694 @default.
- W4308873056 doi "https://doi.org/10.3390/ijgi11110561" @default.
- W4308873056 hasPublicationYear "2022" @default.
- W4308873056 type Work @default.
- W4308873056 citedByCount "1" @default.
- W4308873056 crossrefType "journal-article" @default.
- W4308873056 hasAuthorship W4308873056A5062703882 @default.
- W4308873056 hasAuthorship W4308873056A5064244067 @default.
- W4308873056 hasAuthorship W4308873056A5089132290 @default.
- W4308873056 hasAuthorship W4308873056A5090640053 @default.
- W4308873056 hasBestOaLocation W43088730561 @default.
- W4308873056 hasConcept C124101348 @default.
- W4308873056 hasConcept C132525143 @default.
- W4308873056 hasConcept C142724271 @default.
- W4308873056 hasConcept C159620131 @default.
- W4308873056 hasConcept C166957645 @default.
- W4308873056 hasConcept C191935318 @default.
- W4308873056 hasConcept C205649164 @default.
- W4308873056 hasConcept C23123220 @default.
- W4308873056 hasConcept C2522767166 @default.
- W4308873056 hasConcept C2779134260 @default.
- W4308873056 hasConcept C2987255567 @default.
- W4308873056 hasConcept C3008058167 @default.
- W4308873056 hasConcept C36464697 @default.
- W4308873056 hasConcept C41008148 @default.
- W4308873056 hasConcept C524204448 @default.
- W4308873056 hasConcept C62649853 @default.
- W4308873056 hasConcept C71924100 @default.
- W4308873056 hasConcept C80444323 @default.
- W4308873056 hasConcept C89623803 @default.
- W4308873056 hasConceptScore W4308873056C124101348 @default.
- W4308873056 hasConceptScore W4308873056C132525143 @default.
- W4308873056 hasConceptScore W4308873056C142724271 @default.
- W4308873056 hasConceptScore W4308873056C159620131 @default.
- W4308873056 hasConceptScore W4308873056C166957645 @default.
- W4308873056 hasConceptScore W4308873056C191935318 @default.
- W4308873056 hasConceptScore W4308873056C205649164 @default.