Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308876872> ?p ?o ?g. }
- W4308876872 endingPage "14776" @default.
- W4308876872 startingPage "14776" @default.
- W4308876872 abstract "Artificial intelligence (AI) is the core technology of digital economy, which leads the transition to a sustainable economic growth approach under the Chinese-style environmentally decentralized system. In this paper, we first measured the green total factor productivity (GTFP) of 30 Chinese provinces from 2011 to 2020 using the super-efficiency slacks-based measure (SBM) model, analyzed the mechanism of the effect of AI on GTFP under the environmental decentralization regime, and secondly, empirically investigated the spatial evolution characteristics and the constraining effect of the impact of AI on GTFP using the spatial Durbin model (SDM) and the threshold regression model. The findings reveal: a U shape of the correlation of AI with GTFP; environmental decentralization acts as a positive moderator linking AI and GTFP; the Moran index demonstrates the spatial correlation of GTFP; under the constraint of technological innovation and regional absorptive capacity as threshold variables, the effect of AI over GTFP is U-shaped. This paper provides a useful reference for China to accelerate the formation of a digital-driven green economy development model." @default.
- W4308876872 created "2022-11-18" @default.
- W4308876872 creator A5060600058 @default.
- W4308876872 creator A5065618176 @default.
- W4308876872 creator A5079979034 @default.
- W4308876872 date "2022-11-10" @default.
- W4308876872 modified "2023-09-26" @default.
- W4308876872 title "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect" @default.
- W4308876872 cites W1799410249 @default.
- W4308876872 cites W1987478728 @default.
- W4308876872 cites W2043521656 @default.
- W4308876872 cites W2081908573 @default.
- W4308876872 cites W2097173585 @default.
- W4308876872 cites W2111616256 @default.
- W4308876872 cites W2118898434 @default.
- W4308876872 cites W2135427351 @default.
- W4308876872 cites W2146326366 @default.
- W4308876872 cites W2147903236 @default.
- W4308876872 cites W2167125755 @default.
- W4308876872 cites W2259653670 @default.
- W4308876872 cites W2412568307 @default.
- W4308876872 cites W2531747305 @default.
- W4308876872 cites W2559011724 @default.
- W4308876872 cites W2773014848 @default.
- W4308876872 cites W2796360836 @default.
- W4308876872 cites W2889570543 @default.
- W4308876872 cites W2896528118 @default.
- W4308876872 cites W2912105782 @default.
- W4308876872 cites W2945836620 @default.
- W4308876872 cites W2950165116 @default.
- W4308876872 cites W2950214636 @default.
- W4308876872 cites W2963849010 @default.
- W4308876872 cites W2972728091 @default.
- W4308876872 cites W2981724959 @default.
- W4308876872 cites W2989736713 @default.
- W4308876872 cites W3005821762 @default.
- W4308876872 cites W3009543438 @default.
- W4308876872 cites W3010343442 @default.
- W4308876872 cites W3015582199 @default.
- W4308876872 cites W3031252171 @default.
- W4308876872 cites W3036969569 @default.
- W4308876872 cites W3037338593 @default.
- W4308876872 cites W3037577535 @default.
- W4308876872 cites W3037797943 @default.
- W4308876872 cites W3046344113 @default.
- W4308876872 cites W3081036766 @default.
- W4308876872 cites W3086294041 @default.
- W4308876872 cites W3094194083 @default.
- W4308876872 cites W3100284763 @default.
- W4308876872 cites W3109952239 @default.
- W4308876872 cites W3112534195 @default.
- W4308876872 cites W3115789529 @default.
- W4308876872 cites W3118860958 @default.
- W4308876872 cites W3133996034 @default.
- W4308876872 cites W3135350316 @default.
- W4308876872 cites W3135668414 @default.
- W4308876872 cites W3148046107 @default.
- W4308876872 cites W3152852367 @default.
- W4308876872 cites W3155667698 @default.
- W4308876872 cites W3158722845 @default.
- W4308876872 cites W3159285611 @default.
- W4308876872 cites W3159294383 @default.
- W4308876872 cites W3162059232 @default.
- W4308876872 cites W3163200210 @default.
- W4308876872 cites W3173768708 @default.
- W4308876872 cites W3193733784 @default.
- W4308876872 cites W3204087807 @default.
- W4308876872 cites W3204325587 @default.
- W4308876872 cites W3206097524 @default.
- W4308876872 cites W3214445794 @default.
- W4308876872 cites W3217700056 @default.
- W4308876872 cites W4206145535 @default.
- W4308876872 cites W4206612073 @default.
- W4308876872 cites W4210332043 @default.
- W4308876872 cites W4210802331 @default.
- W4308876872 cites W4213320392 @default.
- W4308876872 cites W4213449557 @default.
- W4308876872 cites W4224242339 @default.
- W4308876872 cites W4225591756 @default.
- W4308876872 cites W4281761367 @default.
- W4308876872 cites W4283026111 @default.
- W4308876872 cites W4284886824 @default.
- W4308876872 cites W4285019357 @default.
- W4308876872 cites W4287010273 @default.
- W4308876872 cites W4290721559 @default.
- W4308876872 cites W4291397443 @default.
- W4308876872 cites W4294718866 @default.
- W4308876872 cites W4299879791 @default.
- W4308876872 cites W4304889376 @default.
- W4308876872 doi "https://doi.org/10.3390/ijerph192214776" @default.
- W4308876872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36429493" @default.
- W4308876872 hasPublicationYear "2022" @default.
- W4308876872 type Work @default.
- W4308876872 citedByCount "3" @default.
- W4308876872 countsByYear W43088768722023 @default.
- W4308876872 crossrefType "journal-article" @default.
- W4308876872 hasAuthorship W4308876872A5060600058 @default.
- W4308876872 hasAuthorship W4308876872A5065618176 @default.