Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308885870> ?p ?o ?g. }
- W4308885870 abstract "Machine learning is frequently being leveraged to tackle problems in the health sector including utilization for clinical decision-support. Its use has historically been focused on single modal data. Attempts to improve prediction and mimic the multimodal nature of clinical expert decision-making has been met in the biomedical field of machine learning by fusing disparate data. This review was conducted to summarize the current studies in this field and identify topics ripe for future research. We conducted this review in accordance with the PRISMA extension for Scoping Reviews to characterize multi-modal data fusion in health. Search strings were established and used in databases: PubMed, Google Scholar, and IEEEXplore from 2011 to 2021. A final set of 128 articles were included in the analysis. The most common health areas utilizing multi-modal methods were neurology and oncology. Early fusion was the most common data merging strategy. Notably, there was an improvement in predictive performance when using data fusion. Lacking from the papers were clear clinical deployment strategies, FDA-approval, and analysis of how using multimodal approaches from diverse sub-populations may improve biases and healthcare disparities. These findings provide a summary on multimodal data fusion as applied to health diagnosis/prognosis problems. Few papers compared the outputs of a multimodal approach with a unimodal prediction. However, those that did achieved an average increase of 6.4% in predictive accuracy. Multi-modal machine learning, while more robust in its estimations over unimodal methods, has drawbacks in its scalability and the time-consuming nature of information concatenation." @default.
- W4308885870 created "2022-11-18" @default.
- W4308885870 creator A5001704304 @default.
- W4308885870 creator A5013719827 @default.
- W4308885870 creator A5031451862 @default.
- W4308885870 creator A5058023532 @default.
- W4308885870 creator A5061435169 @default.
- W4308885870 creator A5068535792 @default.
- W4308885870 creator A5075323750 @default.
- W4308885870 creator A5082633688 @default.
- W4308885870 creator A5084810789 @default.
- W4308885870 date "2022-11-07" @default.
- W4308885870 modified "2023-10-10" @default.
- W4308885870 title "Multimodal machine learning in precision health: A scoping review" @default.
- W4308885870 cites W1134109422 @default.
- W4308885870 cites W1539811621 @default.
- W4308885870 cites W1902526473 @default.
- W4308885870 cites W1982711299 @default.
- W4308885870 cites W2002748000 @default.
- W4308885870 cites W2007921205 @default.
- W4308885870 cites W2019024625 @default.
- W4308885870 cites W2072003918 @default.
- W4308885870 cites W2087710753 @default.
- W4308885870 cites W2088309143 @default.
- W4308885870 cites W2095377654 @default.
- W4308885870 cites W2115478646 @default.
- W4308885870 cites W2119033610 @default.
- W4308885870 cites W2122328291 @default.
- W4308885870 cites W2133297572 @default.
- W4308885870 cites W2136493825 @default.
- W4308885870 cites W2142415201 @default.
- W4308885870 cites W2155830939 @default.
- W4308885870 cites W2158485828 @default.
- W4308885870 cites W2165260680 @default.
- W4308885870 cites W2167917621 @default.
- W4308885870 cites W2252979829 @default.
- W4308885870 cites W2290432223 @default.
- W4308885870 cites W2302501749 @default.
- W4308885870 cites W2302696457 @default.
- W4308885870 cites W2396699558 @default.
- W4308885870 cites W2409767563 @default.
- W4308885870 cites W2468477102 @default.
- W4308885870 cites W2537621452 @default.
- W4308885870 cites W2557880898 @default.
- W4308885870 cites W2579231017 @default.
- W4308885870 cites W2580957850 @default.
- W4308885870 cites W2587570926 @default.
- W4308885870 cites W2592309588 @default.
- W4308885870 cites W2610135452 @default.
- W4308885870 cites W2610332124 @default.
- W4308885870 cites W2612956481 @default.
- W4308885870 cites W2616136281 @default.
- W4308885870 cites W2623597509 @default.
- W4308885870 cites W2651948199 @default.
- W4308885870 cites W2757940437 @default.
- W4308885870 cites W2771817472 @default.
- W4308885870 cites W2782510979 @default.
- W4308885870 cites W2788996259 @default.
- W4308885870 cites W2791015340 @default.
- W4308885870 cites W2799428269 @default.
- W4308885870 cites W2799888754 @default.
- W4308885870 cites W2800078342 @default.
- W4308885870 cites W2802668759 @default.
- W4308885870 cites W2808129629 @default.
- W4308885870 cites W2808897169 @default.
- W4308885870 cites W2884065794 @default.
- W4308885870 cites W2885979170 @default.
- W4308885870 cites W2887749301 @default.
- W4308885870 cites W2889513258 @default.
- W4308885870 cites W2891378911 @default.
- W4308885870 cites W2892053105 @default.
- W4308885870 cites W2893799782 @default.
- W4308885870 cites W2894000069 @default.
- W4308885870 cites W2894178883 @default.
- W4308885870 cites W2898155085 @default.
- W4308885870 cites W2898582579 @default.
- W4308885870 cites W2899104010 @default.
- W4308885870 cites W2899335103 @default.
- W4308885870 cites W2902433159 @default.
- W4308885870 cites W2902516827 @default.
- W4308885870 cites W2903916044 @default.
- W4308885870 cites W2904702872 @default.
- W4308885870 cites W2906922093 @default.
- W4308885870 cites W2907367312 @default.
- W4308885870 cites W2909791909 @default.
- W4308885870 cites W2909807434 @default.
- W4308885870 cites W2913575235 @default.
- W4308885870 cites W2914355569 @default.
- W4308885870 cites W2919159054 @default.
- W4308885870 cites W2937669142 @default.
- W4308885870 cites W2944477354 @default.
- W4308885870 cites W2951095030 @default.
- W4308885870 cites W2953019491 @default.
- W4308885870 cites W2962628575 @default.
- W4308885870 cites W2962937474 @default.
- W4308885870 cites W2963075078 @default.
- W4308885870 cites W2963899699 @default.
- W4308885870 cites W2964250703 @default.
- W4308885870 cites W2964363195 @default.
- W4308885870 cites W2964378789 @default.