Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308888782> ?p ?o ?g. }
- W4308888782 endingPage "100387" @default.
- W4308888782 startingPage "100387" @default.
- W4308888782 abstract "Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers.This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort).A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex.Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region.This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/NIH (R01AG057234), Alzheimer's Association (SG-20-725707-ReDLat), Rainwater Foundation, Takeda (CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT (2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia (BPIN2018000100059), Universidad del Valle (CI 5316); ANID/FONDECYT Regular (1210195, 1210176, 1210176); ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742." @default.
- W4308888782 created "2022-11-18" @default.
- W4308888782 creator A5003643611 @default.
- W4308888782 creator A5006248554 @default.
- W4308888782 creator A5006853806 @default.
- W4308888782 creator A5008375406 @default.
- W4308888782 creator A5014230677 @default.
- W4308888782 creator A5024744959 @default.
- W4308888782 creator A5027425312 @default.
- W4308888782 creator A5028145943 @default.
- W4308888782 creator A5034268426 @default.
- W4308888782 creator A5034273029 @default.
- W4308888782 creator A5037456079 @default.
- W4308888782 creator A5038872308 @default.
- W4308888782 creator A5043751383 @default.
- W4308888782 creator A5046120768 @default.
- W4308888782 creator A5046810623 @default.
- W4308888782 creator A5057274213 @default.
- W4308888782 creator A5061594637 @default.
- W4308888782 creator A5062729438 @default.
- W4308888782 creator A5064791227 @default.
- W4308888782 creator A5065705399 @default.
- W4308888782 creator A5081281804 @default.
- W4308888782 creator A5083730723 @default.
- W4308888782 creator A5085040644 @default.
- W4308888782 creator A5085084859 @default.
- W4308888782 creator A5087430429 @default.
- W4308888782 date "2023-01-01" @default.
- W4308888782 modified "2023-10-18" @default.
- W4308888782 title "Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: a cross sectional observational study" @default.
- W4308888782 cites W1827530491 @default.
- W4308888782 cites W1847168837 @default.
- W4308888782 cites W1910549955 @default.
- W4308888782 cites W1971905263 @default.
- W4308888782 cites W2001755208 @default.
- W4308888782 cites W2008854521 @default.
- W4308888782 cites W2027173374 @default.
- W4308888782 cites W2033298013 @default.
- W4308888782 cites W2049081781 @default.
- W4308888782 cites W2052610531 @default.
- W4308888782 cites W2058161128 @default.
- W4308888782 cites W2058659404 @default.
- W4308888782 cites W2081146438 @default.
- W4308888782 cites W2085870059 @default.
- W4308888782 cites W2106931873 @default.
- W4308888782 cites W2128030851 @default.
- W4308888782 cites W2138190873 @default.
- W4308888782 cites W2138883123 @default.
- W4308888782 cites W2148080316 @default.
- W4308888782 cites W2151627270 @default.
- W4308888782 cites W2157735468 @default.
- W4308888782 cites W2165758561 @default.
- W4308888782 cites W2167311298 @default.
- W4308888782 cites W2343446826 @default.
- W4308888782 cites W2512530201 @default.
- W4308888782 cites W2583500168 @default.
- W4308888782 cites W2601015461 @default.
- W4308888782 cites W2605642694 @default.
- W4308888782 cites W2607838029 @default.
- W4308888782 cites W2619097621 @default.
- W4308888782 cites W2625796101 @default.
- W4308888782 cites W2735155810 @default.
- W4308888782 cites W2736307756 @default.
- W4308888782 cites W2758914739 @default.
- W4308888782 cites W2768689142 @default.
- W4308888782 cites W2774401207 @default.
- W4308888782 cites W2782357757 @default.
- W4308888782 cites W2783944165 @default.
- W4308888782 cites W2784217916 @default.
- W4308888782 cites W2793211523 @default.
- W4308888782 cites W2799462250 @default.
- W4308888782 cites W2911876654 @default.
- W4308888782 cites W2911964244 @default.
- W4308888782 cites W2931768583 @default.
- W4308888782 cites W2962854462 @default.
- W4308888782 cites W2970546478 @default.
- W4308888782 cites W2982752464 @default.
- W4308888782 cites W3046275966 @default.
- W4308888782 cites W3086742452 @default.
- W4308888782 cites W3098037544 @default.
- W4308888782 cites W3107095885 @default.
- W4308888782 cites W3110862467 @default.
- W4308888782 cites W3138107600 @default.
- W4308888782 cites W3168390889 @default.
- W4308888782 cites W3182313452 @default.
- W4308888782 cites W4200279816 @default.
- W4308888782 cites W4206055706 @default.
- W4308888782 cites W4213110991 @default.
- W4308888782 cites W4232822791 @default.
- W4308888782 cites W4283016869 @default.
- W4308888782 cites W4293103679 @default.
- W4308888782 cites W4294142652 @default.
- W4308888782 cites W4295500609 @default.
- W4308888782 cites W577743257 @default.
- W4308888782 doi "https://doi.org/10.1016/j.lana.2022.100387" @default.
- W4308888782 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36583137" @default.
- W4308888782 hasPublicationYear "2023" @default.
- W4308888782 type Work @default.