Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308902488> ?p ?o ?g. }
- W4308902488 endingPage "162" @default.
- W4308902488 startingPage "152" @default.
- W4308902488 abstract "/Objective: Tissue engineering involves scaffolds, cells and growth factors, among which growth factors have limited applications due to potential safety risks and high costs. Therefore, an alternative approach to exogenously induce osteogenesis is desirable. Considering that osteogenesis and angiogenesis are coupled, a system of human umbilical vein endothelial cells (HUVECs) and human bone mesenchymal stem cells (hBMSCs) coculture is more biologically adapted to the microenvironment in vivo and can mediate osteogenesis and angiogenesis via paracrine signalling. Hence, in this study, a HUVECs/hBMSCs coculture system with appropriate cell and medium proportions was established. The substrate for the coculture system was a 3D-printed composite bioceramic scaffold (β-TCP/CaSiO3) based on a previous study. The aim of this study was to explore the potential of this system for bone tissue engineering. Bioactive ceramic scaffolds for tissue engineering were fabricated via a 3D Bioplotter™ system. The coculture system for in vitro and in vivo studies consisted of direct contact between HUVECs and hBMSCs cultured on the 3D-printed scaffolds. The proportions of HUVECs/hBMSCs and medium components were determined by cell viability, and the coculture system showed negligible cytotoxicity. CD31 secreted by HUVECs formed strings, and cells tended to aggregate in island chain-like arrays. Real-time cell tracking showed that HUVECs were recruited by hBMSCs, and the integrin expression by HUVECs was upregulated. Ultimately, osteogenic and angiogenic marker gene expression and protein secretion were upregulated. Moreover, the obtained bone tissue engineering scaffolds could induce early osteogenic protein secretion and capillary tube formation in nude rats. These bone tissue engineering scaffolds without exogenous growth factors exhibited the ability to promote osteogenesis/angiogenesis. The fabricated 3D-printed bioactive ceramic scaffolds could provide mechanical, biodegradable and bioadaptive support for personalized bone regeneration. In addition, the bone tissue engineering scaffolds exhibited the ability to promote osteogenesis/angiogenesis without the addition of exogenous growth factors, thus mitigating safety risks. Although application of the HUVECs/hBMSCs coculture system might be a time-consuming process, further development of cord blood storage could be beneficial for multicell coculture." @default.
- W4308902488 created "2022-11-19" @default.
- W4308902488 creator A5017105556 @default.
- W4308902488 creator A5024324249 @default.
- W4308902488 creator A5030921116 @default.
- W4308902488 creator A5033837381 @default.
- W4308902488 creator A5034247717 @default.
- W4308902488 creator A5034711601 @default.
- W4308902488 creator A5037458498 @default.
- W4308902488 creator A5050212189 @default.
- W4308902488 creator A5069266579 @default.
- W4308902488 creator A5069689440 @default.
- W4308902488 creator A5070920259 @default.
- W4308902488 creator A5076409244 @default.
- W4308902488 creator A5088413875 @default.
- W4308902488 date "2022-11-01" @default.
- W4308902488 modified "2023-10-15" @default.
- W4308902488 title "Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis" @default.
- W4308902488 cites W1762036144 @default.
- W4308902488 cites W1783580437 @default.
- W4308902488 cites W1968694257 @default.
- W4308902488 cites W1983834900 @default.
- W4308902488 cites W1990231045 @default.
- W4308902488 cites W2000777243 @default.
- W4308902488 cites W2032067160 @default.
- W4308902488 cites W2060475101 @default.
- W4308902488 cites W2071677160 @default.
- W4308902488 cites W2075436227 @default.
- W4308902488 cites W2077230011 @default.
- W4308902488 cites W2077648724 @default.
- W4308902488 cites W2099355940 @default.
- W4308902488 cites W2119763108 @default.
- W4308902488 cites W2129477690 @default.
- W4308902488 cites W2139536396 @default.
- W4308902488 cites W2225591226 @default.
- W4308902488 cites W2319562462 @default.
- W4308902488 cites W2497359692 @default.
- W4308902488 cites W2594456004 @default.
- W4308902488 cites W2594549139 @default.
- W4308902488 cites W2608209876 @default.
- W4308902488 cites W2734482662 @default.
- W4308902488 cites W2737721978 @default.
- W4308902488 cites W2803101657 @default.
- W4308902488 cites W2811591230 @default.
- W4308902488 cites W2883996592 @default.
- W4308902488 cites W2921887881 @default.
- W4308902488 cites W2967905597 @default.
- W4308902488 cites W3014067515 @default.
- W4308902488 cites W3015854084 @default.
- W4308902488 cites W3021774392 @default.
- W4308902488 cites W3027622008 @default.
- W4308902488 cites W3039026626 @default.
- W4308902488 cites W3089474714 @default.
- W4308902488 cites W3106482867 @default.
- W4308902488 cites W3111672492 @default.
- W4308902488 cites W3114356473 @default.
- W4308902488 cites W3116850700 @default.
- W4308902488 cites W3119848058 @default.
- W4308902488 cites W3128504896 @default.
- W4308902488 cites W3132693674 @default.
- W4308902488 cites W3136643901 @default.
- W4308902488 cites W3209235322 @default.
- W4308902488 cites W3212545608 @default.
- W4308902488 cites W402335930 @default.
- W4308902488 cites W4285616690 @default.
- W4308902488 cites W4286689078 @default.
- W4308902488 doi "https://doi.org/10.1016/j.jot.2022.10.008" @default.
- W4308902488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36380884" @default.
- W4308902488 hasPublicationYear "2022" @default.
- W4308902488 type Work @default.
- W4308902488 citedByCount "4" @default.
- W4308902488 countsByYear W43089024882022 @default.
- W4308902488 countsByYear W43089024882023 @default.
- W4308902488 crossrefType "journal-article" @default.
- W4308902488 hasAuthorship W4308902488A5017105556 @default.
- W4308902488 hasAuthorship W4308902488A5024324249 @default.
- W4308902488 hasAuthorship W4308902488A5030921116 @default.
- W4308902488 hasAuthorship W4308902488A5033837381 @default.
- W4308902488 hasAuthorship W4308902488A5034247717 @default.
- W4308902488 hasAuthorship W4308902488A5034711601 @default.
- W4308902488 hasAuthorship W4308902488A5037458498 @default.
- W4308902488 hasAuthorship W4308902488A5050212189 @default.
- W4308902488 hasAuthorship W4308902488A5069266579 @default.
- W4308902488 hasAuthorship W4308902488A5069689440 @default.
- W4308902488 hasAuthorship W4308902488A5070920259 @default.
- W4308902488 hasAuthorship W4308902488A5076409244 @default.
- W4308902488 hasAuthorship W4308902488A5088413875 @default.
- W4308902488 hasBestOaLocation W43089024881 @default.
- W4308902488 hasConcept C136229726 @default.
- W4308902488 hasConcept C185592680 @default.
- W4308902488 hasConcept C198826908 @default.
- W4308902488 hasConcept C202751555 @default.
- W4308902488 hasConcept C2777411675 @default.
- W4308902488 hasConcept C2780394083 @default.
- W4308902488 hasConcept C49892992 @default.
- W4308902488 hasConcept C502942594 @default.
- W4308902488 hasConcept C55493867 @default.
- W4308902488 hasConcept C71924100 @default.