Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308914906> ?p ?o ?g. }
- W4308914906 abstract "Abstract Idiopathic pulmonary fibrosis, the archetype of pulmonary fibrosis (PF), is a chronic lung disease of a poor prognosis, characterized by progressively worsening of lung function. Although histology is still the gold standard for PF assessment in preclinical practice, histological data typically involve less than 1% of total lung volume and are not amenable to longitudinal studies. A miniaturized version of computed tomography (µCT) has been introduced to radiologically examine lung in preclinical murine models of PF. The linear relationship between X-ray attenuation and tissue density allows lung densitometry on total lung volume. However, the huge density changes caused by PF usually require manual segmentation by trained operators, limiting µCT deployment in preclinical routine. Deep learning approaches have achieved state-of-the-art performance in medical image segmentation. In this work, we propose a fully automated deep learning approach to segment right and left lung on µCT imaging and subsequently derive lung densitometry. Our pipeline first employs a convolutional network (CNN) for pre-processing at low-resolution and then a 2.5D CNN for higher-resolution segmentation, combining computational advantage of 2D and ability to address 3D spatial coherence without compromising accuracy. Finally, lungs are divided into compartments based on air content assessed by density. We validated this pipeline on 72 mice with different grades of PF, achieving a Dice score of 0.967 on test set. Our tests demonstrate that this automated tool allows for rapid and comprehensive analysis of µCT scans of PF murine models, thus laying the ground for its wider exploitation in preclinical settings." @default.
- W4308914906 created "2022-11-19" @default.
- W4308914906 creator A5003964675 @default.
- W4308914906 creator A5027729180 @default.
- W4308914906 creator A5032083229 @default.
- W4308914906 creator A5037329218 @default.
- W4308914906 creator A5039222038 @default.
- W4308914906 creator A5050397273 @default.
- W4308914906 creator A5060536888 @default.
- W4308914906 creator A5062299180 @default.
- W4308914906 creator A5066554893 @default.
- W4308914906 creator A5082704176 @default.
- W4308914906 creator A5084167254 @default.
- W4308914906 date "2022-11-11" @default.
- W4308914906 modified "2023-10-15" @default.
- W4308914906 title "A fully automated deep learning pipeline for micro-CT-imaging-based densitometry of lung fibrosis murine models" @default.
- W4308914906 cites W1901129140 @default.
- W4308914906 cites W2046758959 @default.
- W4308914906 cites W2566332002 @default.
- W4308914906 cites W2568376525 @default.
- W4308914906 cites W2592494573 @default.
- W4308914906 cites W2606883223 @default.
- W4308914906 cites W2610199736 @default.
- W4308914906 cites W2744535945 @default.
- W4308914906 cites W2752968830 @default.
- W4308914906 cites W2768452128 @default.
- W4308914906 cites W2891706393 @default.
- W4308914906 cites W2894904035 @default.
- W4308914906 cites W2967229796 @default.
- W4308914906 cites W3021543659 @default.
- W4308914906 cites W3027530322 @default.
- W4308914906 cites W3043621140 @default.
- W4308914906 cites W3049400721 @default.
- W4308914906 cites W3092972206 @default.
- W4308914906 cites W3095440947 @default.
- W4308914906 cites W3096513751 @default.
- W4308914906 cites W3120253959 @default.
- W4308914906 cites W4206807348 @default.
- W4308914906 cites W4210336320 @default.
- W4308914906 cites W4221027618 @default.
- W4308914906 cites W4225403198 @default.
- W4308914906 cites W4282839756 @default.
- W4308914906 doi "https://doi.org/10.1186/s12931-022-02236-x" @default.
- W4308914906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36369209" @default.
- W4308914906 hasPublicationYear "2022" @default.
- W4308914906 type Work @default.
- W4308914906 citedByCount "3" @default.
- W4308914906 countsByYear W43089149062023 @default.
- W4308914906 crossrefType "journal-article" @default.
- W4308914906 hasAuthorship W4308914906A5003964675 @default.
- W4308914906 hasAuthorship W4308914906A5027729180 @default.
- W4308914906 hasAuthorship W4308914906A5032083229 @default.
- W4308914906 hasAuthorship W4308914906A5037329218 @default.
- W4308914906 hasAuthorship W4308914906A5039222038 @default.
- W4308914906 hasAuthorship W4308914906A5050397273 @default.
- W4308914906 hasAuthorship W4308914906A5060536888 @default.
- W4308914906 hasAuthorship W4308914906A5062299180 @default.
- W4308914906 hasAuthorship W4308914906A5066554893 @default.
- W4308914906 hasAuthorship W4308914906A5082704176 @default.
- W4308914906 hasAuthorship W4308914906A5084167254 @default.
- W4308914906 hasBestOaLocation W43089149061 @default.
- W4308914906 hasConcept C108583219 @default.
- W4308914906 hasConcept C126322002 @default.
- W4308914906 hasConcept C126838900 @default.
- W4308914906 hasConcept C136496925 @default.
- W4308914906 hasConcept C142724271 @default.
- W4308914906 hasConcept C153180895 @default.
- W4308914906 hasConcept C154945302 @default.
- W4308914906 hasConcept C199360897 @default.
- W4308914906 hasConcept C2777714996 @default.
- W4308914906 hasConcept C2780559512 @default.
- W4308914906 hasConcept C40993552 @default.
- W4308914906 hasConcept C41008148 @default.
- W4308914906 hasConcept C43521106 @default.
- W4308914906 hasConcept C71924100 @default.
- W4308914906 hasConcept C81363708 @default.
- W4308914906 hasConcept C89600930 @default.
- W4308914906 hasConceptScore W4308914906C108583219 @default.
- W4308914906 hasConceptScore W4308914906C126322002 @default.
- W4308914906 hasConceptScore W4308914906C126838900 @default.
- W4308914906 hasConceptScore W4308914906C136496925 @default.
- W4308914906 hasConceptScore W4308914906C142724271 @default.
- W4308914906 hasConceptScore W4308914906C153180895 @default.
- W4308914906 hasConceptScore W4308914906C154945302 @default.
- W4308914906 hasConceptScore W4308914906C199360897 @default.
- W4308914906 hasConceptScore W4308914906C2777714996 @default.
- W4308914906 hasConceptScore W4308914906C2780559512 @default.
- W4308914906 hasConceptScore W4308914906C40993552 @default.
- W4308914906 hasConceptScore W4308914906C41008148 @default.
- W4308914906 hasConceptScore W4308914906C43521106 @default.
- W4308914906 hasConceptScore W4308914906C71924100 @default.
- W4308914906 hasConceptScore W4308914906C81363708 @default.
- W4308914906 hasConceptScore W4308914906C89600930 @default.
- W4308914906 hasIssue "1" @default.
- W4308914906 hasLocation W43089149061 @default.
- W4308914906 hasLocation W43089149062 @default.
- W4308914906 hasLocation W43089149063 @default.
- W4308914906 hasOpenAccess W4308914906 @default.
- W4308914906 hasPrimaryLocation W43089149061 @default.
- W4308914906 hasRelatedWork W1485275142 @default.