Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308918650> ?p ?o ?g. }
- W4308918650 endingPage "113032" @default.
- W4308918650 startingPage "113032" @default.
- W4308918650 abstract "Estimating transmission or loss is at the heart of spectroscopy. To achieve the ultimate quantum resolution limit, one must use probe states with definite photon number and detectors capable of distinguishing the number of photons impinging thereon. In practice, one can outperform classical limits using two-mode squeezed light, which can be used to herald definite-photon-number probes, but the heralding is not guaranteed to produce the desired probes when there is loss in the heralding arm or its detector is imperfect. We show that this paradigm can be used to simultaneously measure distinct loss parameters in both modes of the squeezed light, with attainable quantum advantages. We demonstrate this protocol on Xanadu's X8 chip, accessed via the cloud, building photon-number probability distributions from $10^6$ shots and performing maximum likelihood estimation (MLE) on these distributions $10^3$ independent times. Because pump light may be lost before the squeezing occurs, we also simultaneously estimate the actual input power, using the theory of nuisance parameters. MLE converges to estimate the transmission amplitudes in X8's eight modes to be 0.39202(6), 0.30706(8), 0.36937(6), 0.28730(9), 0.38206(6), 0.30441(8), 0.37229(6), and 0.28621(8) and the squeezing parameters, which are proxies for effective input coherent-state amplitudes, their losses, and their nonlinear interaction times, to be 1.3000(2), 1.3238(3), 1.2666(2), and 1.3425(3); all of these uncertainties are within a factor of two of the quantum Cram'er-Rao bound. This study provides crucial insight into the intersection of quantum multiparameter estimation theory, MLE convergence, and the characterization and performance of real quantum devices." @default.
- W4308918650 created "2022-11-19" @default.
- W4308918650 creator A5005941156 @default.
- W4308918650 creator A5018246926 @default.
- W4308918650 date "2022-11-01" @default.
- W4308918650 modified "2023-09-25" @default.
- W4308918650 title "Multiparameter transmission estimation at the quantum Cramér–Rao limit on a cloud quantum computer" @default.
- W4308918650 cites W1679035730 @default.
- W4308918650 cites W1912660616 @default.
- W4308918650 cites W1941757310 @default.
- W4308918650 cites W1964488950 @default.
- W4308918650 cites W1968395846 @default.
- W4308918650 cites W1969607897 @default.
- W4308918650 cites W1969955524 @default.
- W4308918650 cites W1971500547 @default.
- W4308918650 cites W1974859224 @default.
- W4308918650 cites W1980700461 @default.
- W4308918650 cites W1983173896 @default.
- W4308918650 cites W1985734554 @default.
- W4308918650 cites W1991338053 @default.
- W4308918650 cites W1993122650 @default.
- W4308918650 cites W1999509003 @default.
- W4308918650 cites W1999625489 @default.
- W4308918650 cites W1999664967 @default.
- W4308918650 cites W2005080194 @default.
- W4308918650 cites W2005287020 @default.
- W4308918650 cites W2016932851 @default.
- W4308918650 cites W2032846663 @default.
- W4308918650 cites W2034616707 @default.
- W4308918650 cites W2035987946 @default.
- W4308918650 cites W2037633090 @default.
- W4308918650 cites W2038710373 @default.
- W4308918650 cites W2042573653 @default.
- W4308918650 cites W2056723274 @default.
- W4308918650 cites W2065782321 @default.
- W4308918650 cites W2068895716 @default.
- W4308918650 cites W2070320789 @default.
- W4308918650 cites W2072049807 @default.
- W4308918650 cites W2074168384 @default.
- W4308918650 cites W2077907852 @default.
- W4308918650 cites W2108491246 @default.
- W4308918650 cites W2123924478 @default.
- W4308918650 cites W2162523943 @default.
- W4308918650 cites W2169119609 @default.
- W4308918650 cites W2257396197 @default.
- W4308918650 cites W2257438389 @default.
- W4308918650 cites W2337130964 @default.
- W4308918650 cites W2343259352 @default.
- W4308918650 cites W2484128055 @default.
- W4308918650 cites W2550448660 @default.
- W4308918650 cites W2552574584 @default.
- W4308918650 cites W2560940965 @default.
- W4308918650 cites W2567527357 @default.
- W4308918650 cites W2582012066 @default.
- W4308918650 cites W2611519773 @default.
- W4308918650 cites W2795736778 @default.
- W4308918650 cites W2796615720 @default.
- W4308918650 cites W2962766821 @default.
- W4308918650 cites W2999795922 @default.
- W4308918650 cites W3004436163 @default.
- W4308918650 cites W3015152411 @default.
- W4308918650 cites W3019622531 @default.
- W4308918650 cites W3038093465 @default.
- W4308918650 cites W3038774573 @default.
- W4308918650 cites W3039996182 @default.
- W4308918650 cites W3082774219 @default.
- W4308918650 cites W3088094860 @default.
- W4308918650 cites W3097975387 @default.
- W4308918650 cites W3101249109 @default.
- W4308918650 cites W3101695714 @default.
- W4308918650 cites W3101895631 @default.
- W4308918650 cites W3102184011 @default.
- W4308918650 cites W3103426213 @default.
- W4308918650 cites W3105103737 @default.
- W4308918650 cites W3105464570 @default.
- W4308918650 cites W3105676084 @default.
- W4308918650 cites W3132134067 @default.
- W4308918650 cites W3134798533 @default.
- W4308918650 cites W3161641811 @default.
- W4308918650 cites W3198191909 @default.
- W4308918650 cites W3204882562 @default.
- W4308918650 cites W3207951914 @default.
- W4308918650 cites W3209594791 @default.
- W4308918650 cites W3210159903 @default.
- W4308918650 cites W3215597002 @default.
- W4308918650 cites W3217345916 @default.
- W4308918650 cites W3217642339 @default.
- W4308918650 cites W4212786834 @default.
- W4308918650 cites W4226197472 @default.
- W4308918650 cites W4250572623 @default.
- W4308918650 cites W4281891658 @default.
- W4308918650 cites W4283727539 @default.
- W4308918650 cites W857798576 @default.
- W4308918650 doi "https://doi.org/10.1088/1367-2630/aca21c" @default.
- W4308918650 hasPublicationYear "2022" @default.
- W4308918650 type Work @default.
- W4308918650 citedByCount "3" @default.
- W4308918650 countsByYear W43089186502023 @default.