Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308927259> ?p ?o ?g. }
- W4308927259 endingPage "108010" @default.
- W4308927259 startingPage "108010" @default.
- W4308927259 abstract "The study investigates the influence of free surface by jet impingement of aqueous nanodispersion dominant with hybridized nanoparticles. Hybrid nanofluid (HNF) was prepared by a two-step approach using 7 nm Alumina (γ-Al 2 O 3 ) and a dominant portion of 3–5 nm Multi-Walled Carbon Nano-Tubes (MWCNT) in the ratio of 10:90 dispersed within deionized (DI) water base fluid. The nanofluid viscosity and thermal conductivity measurements were at varying temperatures (10–60 °C) and volume concentrations (0.025, 0.05, 0.1, and 0.15%). A jet nozzle (1.65 mm inner diameter) impinged the HNFs onto a targeted round surface (42 mm diameter) at an H/D j ratio of 4. The Nusselt number ( Nu ) evaluations were at varying fully-developed turbulent regimes: Reynolds number (Re) between 6000 and 16,500, Weber number (We) between 1000 and 7000, and Peclet number ( Pe ) between 80,000 and 205,000. Besides, we investigated a transient cooling rate for varying volume concentrations (vol%) and the numerical aspect of the work by employing the Eulerian-Eulerian approach to model jet impingement. The maximum augmentation in Nu number is at 0.05 vol% HNF, with a 17% increase compared to DI water. Based on the numerical investigation using Computational Fluid Dynamics (CFD), a maximum improvement of 19.7% in Nu number was with the 0.15 vol% HNF, whereas the improvement in the 0.05 vol% particle concentration fluid was 13.7%. The ambiguity of the results between the experiment and CFD analysis could be connected to the size and shape of nanoparticles, mixing or swirling parameters, surfactant type, or a combination of all the above. In terms of the transient cooling rate investigated, the best-performing fluid is the 0.15 vol% particle concentration fluid with a relaxation time of 1 s in CFD and 1.75 s in the experiment. Besides, the steady time is 23 s in CFD and 33 s in the experiments. A correlation for the Nusselt number is proposed based on the obtained data. • Jet impingement of MWCNT/Al 2 O 3 (90:10) nanofluids over a flat heated surface. • Viscosity, thermal conductivity and surface tension of nanofluids at φ = 0.025–0.15%. • Experiments in the range of 6000 = Re ≤ 16,500, 1000 = We ≤ 7000, 80,000 = Pe ≤ 205,000. • Experiments show a maximum augmentation of 17% in the Nusselt number at φ = 0.05%. • Nusselt number correlation as a function of φ and Reynolds number, is proposed." @default.
- W4308927259 created "2022-11-19" @default.
- W4308927259 creator A5034696388 @default.
- W4308927259 creator A5042074245 @default.
- W4308927259 creator A5049866076 @default.
- W4308927259 creator A5054758655 @default.
- W4308927259 creator A5071154060 @default.
- W4308927259 date "2023-02-01" @default.
- W4308927259 modified "2023-10-16" @default.
- W4308927259 title "Experimental and numerical investigation to evaluate the thermal performance of jet impingement surface cooling with MWCNT/Al2O3-deionized water hybrid nanofluid" @default.
- W4308927259 cites W1902331727 @default.
- W4308927259 cites W1976924442 @default.
- W4308927259 cites W1977501509 @default.
- W4308927259 cites W1994605614 @default.
- W4308927259 cites W1997589144 @default.
- W4308927259 cites W2001699160 @default.
- W4308927259 cites W2012055871 @default.
- W4308927259 cites W2043870062 @default.
- W4308927259 cites W2056376036 @default.
- W4308927259 cites W2060818503 @default.
- W4308927259 cites W2080205971 @default.
- W4308927259 cites W2116698340 @default.
- W4308927259 cites W2137933424 @default.
- W4308927259 cites W2158647299 @default.
- W4308927259 cites W2167029698 @default.
- W4308927259 cites W2221346760 @default.
- W4308927259 cites W2563916945 @default.
- W4308927259 cites W2579168311 @default.
- W4308927259 cites W2754245930 @default.
- W4308927259 cites W2770116250 @default.
- W4308927259 cites W2783490559 @default.
- W4308927259 cites W2904649722 @default.
- W4308927259 cites W2989825057 @default.
- W4308927259 cites W3014969291 @default.
- W4308927259 cites W3034304320 @default.
- W4308927259 cites W3043755533 @default.
- W4308927259 cites W3082967993 @default.
- W4308927259 cites W3155090995 @default.
- W4308927259 cites W3160430568 @default.
- W4308927259 cites W3193670194 @default.
- W4308927259 cites W3214997270 @default.
- W4308927259 cites W3216894949 @default.
- W4308927259 cites W4210597222 @default.
- W4308927259 cites W4283277976 @default.
- W4308927259 cites W4286635301 @default.
- W4308927259 cites W4296746022 @default.
- W4308927259 doi "https://doi.org/10.1016/j.ijthermalsci.2022.108010" @default.
- W4308927259 hasPublicationYear "2023" @default.
- W4308927259 type Work @default.
- W4308927259 citedByCount "2" @default.
- W4308927259 countsByYear W43089272592023 @default.
- W4308927259 crossrefType "journal-article" @default.
- W4308927259 hasAuthorship W4308927259A5034696388 @default.
- W4308927259 hasAuthorship W4308927259A5042074245 @default.
- W4308927259 hasAuthorship W4308927259A5049866076 @default.
- W4308927259 hasAuthorship W4308927259A5054758655 @default.
- W4308927259 hasAuthorship W4308927259A5071154060 @default.
- W4308927259 hasConcept C119947313 @default.
- W4308927259 hasConcept C121332964 @default.
- W4308927259 hasConcept C155672457 @default.
- W4308927259 hasConcept C159985019 @default.
- W4308927259 hasConcept C171250308 @default.
- W4308927259 hasConcept C192562407 @default.
- W4308927259 hasConcept C204530211 @default.
- W4308927259 hasConcept C21946209 @default.
- W4308927259 hasConcept C2524010 @default.
- W4308927259 hasConcept C2776799497 @default.
- W4308927259 hasConcept C2994381353 @default.
- W4308927259 hasConcept C33923547 @default.
- W4308927259 hasConcept C56200935 @default.
- W4308927259 hasConcept C57879066 @default.
- W4308927259 hasConcept C97355855 @default.
- W4308927259 hasConceptScore W4308927259C119947313 @default.
- W4308927259 hasConceptScore W4308927259C121332964 @default.
- W4308927259 hasConceptScore W4308927259C155672457 @default.
- W4308927259 hasConceptScore W4308927259C159985019 @default.
- W4308927259 hasConceptScore W4308927259C171250308 @default.
- W4308927259 hasConceptScore W4308927259C192562407 @default.
- W4308927259 hasConceptScore W4308927259C204530211 @default.
- W4308927259 hasConceptScore W4308927259C21946209 @default.
- W4308927259 hasConceptScore W4308927259C2524010 @default.
- W4308927259 hasConceptScore W4308927259C2776799497 @default.
- W4308927259 hasConceptScore W4308927259C2994381353 @default.
- W4308927259 hasConceptScore W4308927259C33923547 @default.
- W4308927259 hasConceptScore W4308927259C56200935 @default.
- W4308927259 hasConceptScore W4308927259C57879066 @default.
- W4308927259 hasConceptScore W4308927259C97355855 @default.
- W4308927259 hasLocation W43089272591 @default.
- W4308927259 hasOpenAccess W4308927259 @default.
- W4308927259 hasPrimaryLocation W43089272591 @default.
- W4308927259 hasRelatedWork W2024380345 @default.
- W4308927259 hasRelatedWork W2094596463 @default.
- W4308927259 hasRelatedWork W2094716493 @default.
- W4308927259 hasRelatedWork W2337279084 @default.
- W4308927259 hasRelatedWork W2362722125 @default.
- W4308927259 hasRelatedWork W2380285107 @default.
- W4308927259 hasRelatedWork W2943139412 @default.
- W4308927259 hasRelatedWork W2953777682 @default.