Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308946221> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4308946221 endingPage "103150" @default.
- W4308946221 startingPage "103150" @default.
- W4308946221 abstract "Nowadays, researchers are investing their time and devoting their efforts in developing and motivating the 6G vision and resources that are not available in 5G. Edge computing and autonomous vehicular driving applications are more enhanced under the 6G services that are provided to successfully operate tasks. The huge volume of data resulting from such applications can be a plus in the AI and Machine Learning (ML) world. Traditional ML models are used to train their models on centralized data sets. Lately, data privacy becomes a real aspect to take into consideration while collecting data. For that, Federated Learning (FL) plays nowadays a great role in addressing privacy and technology together by maintaining the ability to learn over decentralized data sets. The training is limited to the user devices only while sharing the locally computed parameter with the server that aggregates those updated weights to optimize a global model. This scenario is repeated multiple rounds for better results and convergence. Most of the literature proposed client selection methods to converge faster and increase accuracy. However, none of them has targeted the ability to deploy and select clients in real-time wherever and whenever needed. In fact, some mobile and vehicular devices are not available to serve as clients in the FL due to the highly dynamic environments and/or do not have the capabilities to accomplish this task. In this paper, we address the aforementioned limitations by introducing an on-demand client deployment in FL offering more volume and heterogeneity of data in the learning process. We make use of containerization technology such as Docker to build efficient environments using any type of client devices serving as volunteering devices, and Kubernetes utility called Kubeadm to monitor the devices. The performed experiments illustrate the relevance of the proposed approach and the efficiency of the deployment of clients whenever and wherever needed. • A novel on-demand client deployment in Federated learning. • Targeting the problem of clients availability in pre-configured FL areas. • Targeting clients that do not have the needed capabilities for learning. • An efficient orchestration and deployment of ML services on newly formed client devices." @default.
- W4308946221 created "2022-11-19" @default.
- W4308946221 creator A5005269467 @default.
- W4308946221 creator A5034218046 @default.
- W4308946221 creator A5067986202 @default.
- W4308946221 date "2023-01-01" @default.
- W4308946221 modified "2023-10-11" @default.
- W4308946221 title "On the feasibility of Federated Learning towards on-demand client deployment at the edge" @default.
- W4308946221 cites W2623499016 @default.
- W4308946221 cites W2997577891 @default.
- W4308946221 cites W3012494113 @default.
- W4308946221 cites W3084436411 @default.
- W4308946221 cites W3093755649 @default.
- W4308946221 cites W3094019951 @default.
- W4308946221 cites W3106579540 @default.
- W4308946221 cites W3134843574 @default.
- W4308946221 cites W3135231128 @default.
- W4308946221 cites W3154459044 @default.
- W4308946221 cites W3187784948 @default.
- W4308946221 cites W3192661977 @default.
- W4308946221 cites W3214662754 @default.
- W4308946221 cites W4200526356 @default.
- W4308946221 cites W4206358929 @default.
- W4308946221 cites W4225637091 @default.
- W4308946221 cites W4293155325 @default.
- W4308946221 doi "https://doi.org/10.1016/j.ipm.2022.103150" @default.
- W4308946221 hasPublicationYear "2023" @default.
- W4308946221 type Work @default.
- W4308946221 citedByCount "15" @default.
- W4308946221 countsByYear W43089462212023 @default.
- W4308946221 crossrefType "journal-article" @default.
- W4308946221 hasAuthorship W4308946221A5005269467 @default.
- W4308946221 hasAuthorship W4308946221A5034218046 @default.
- W4308946221 hasAuthorship W4308946221A5067986202 @default.
- W4308946221 hasConcept C105339364 @default.
- W4308946221 hasConcept C115903868 @default.
- W4308946221 hasConcept C136764020 @default.
- W4308946221 hasConcept C154945302 @default.
- W4308946221 hasConcept C162307627 @default.
- W4308946221 hasConcept C2983523559 @default.
- W4308946221 hasConcept C41008148 @default.
- W4308946221 hasConcept C49774154 @default.
- W4308946221 hasConceptScore W4308946221C105339364 @default.
- W4308946221 hasConceptScore W4308946221C115903868 @default.
- W4308946221 hasConceptScore W4308946221C136764020 @default.
- W4308946221 hasConceptScore W4308946221C154945302 @default.
- W4308946221 hasConceptScore W4308946221C162307627 @default.
- W4308946221 hasConceptScore W4308946221C2983523559 @default.
- W4308946221 hasConceptScore W4308946221C41008148 @default.
- W4308946221 hasConceptScore W4308946221C49774154 @default.
- W4308946221 hasIssue "1" @default.
- W4308946221 hasLocation W43089462211 @default.
- W4308946221 hasOpenAccess W4308946221 @default.
- W4308946221 hasPrimaryLocation W43089462211 @default.
- W4308946221 hasRelatedWork W1590991404 @default.
- W4308946221 hasRelatedWork W1964910036 @default.
- W4308946221 hasRelatedWork W1969481115 @default.
- W4308946221 hasRelatedWork W1993443414 @default.
- W4308946221 hasRelatedWork W2322082708 @default.
- W4308946221 hasRelatedWork W2362198170 @default.
- W4308946221 hasRelatedWork W2748952813 @default.
- W4308946221 hasRelatedWork W2991479001 @default.
- W4308946221 hasRelatedWork W3082993789 @default.
- W4308946221 hasRelatedWork W4312263439 @default.
- W4308946221 hasVolume "60" @default.
- W4308946221 isParatext "false" @default.
- W4308946221 isRetracted "false" @default.
- W4308946221 workType "article" @default.