Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308951285> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4308951285 endingPage "126100" @default.
- W4308951285 startingPage "126100" @default.
- W4308951285 abstract "This study proposes an effective model for enhancing the short-term wind speed forecasting performance by considering the effect of multiple meteorological factors. (a) The filter-wrapper non-dominated sorting differential evolution algorithm incorporating K-medoid clustering (FWNSDEC) is designed to select key meteorological factors and generate multiple feature subsets. For each feature subset, the hybrid deep learning model is designed: (b) singular spectrum analysis (SSA) is used to decompose the meteorological factors and construct the three-dimensional input structure; (c) convolutional long short-term memory (ConvLSTM) network is then adopted to process the sample set of three-dimensional sequence, and the final forecasting result is the average prediction of all the built ConvLSTMs. To evaluate the effectiveness of FWNSDEC-SSA-ConvLSTM, three comparative experiments on four datasets collected from the National Renewable Energy Laboratory are implemented. Experiment results show that the average mean absolute percentage error over four datasets for 1-step-ahead, 2-step-ahead, and 3-step-ahead forecasting is 1.42%, 1.99%, and 3.28%, respectively, which are much better than the predictions using feature selection benchmarks, hybrid forecasting benchmarks with different deep learning networks and data decomposition methods, and other advanced forecasting systems. Extended model discussion in terms of Friedman test and parameters sensitivity analysis further verifies the potential of proposed model." @default.
- W4308951285 created "2022-11-20" @default.
- W4308951285 creator A5008829405 @default.
- W4308951285 creator A5051989160 @default.
- W4308951285 date "2023-01-01" @default.
- W4308951285 modified "2023-10-16" @default.
- W4308951285 title "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model" @default.
- W4308951285 cites W2606283685 @default.
- W4308951285 cites W2770188460 @default.
- W4308951285 cites W2915806950 @default.
- W4308951285 cites W2944487131 @default.
- W4308951285 cites W2969358077 @default.
- W4308951285 cites W2999618686 @default.
- W4308951285 cites W3004665554 @default.
- W4308951285 cites W3021308819 @default.
- W4308951285 cites W3034941184 @default.
- W4308951285 cites W3046247825 @default.
- W4308951285 cites W3080928054 @default.
- W4308951285 cites W3083628579 @default.
- W4308951285 cites W3093126433 @default.
- W4308951285 cites W3134734810 @default.
- W4308951285 cites W3135463282 @default.
- W4308951285 cites W3158547118 @default.
- W4308951285 cites W3196746377 @default.
- W4308951285 cites W3200304500 @default.
- W4308951285 cites W3200790647 @default.
- W4308951285 cites W3209405477 @default.
- W4308951285 cites W3212858282 @default.
- W4308951285 cites W3213652448 @default.
- W4308951285 cites W3217613107 @default.
- W4308951285 cites W4200079377 @default.
- W4308951285 cites W4210997473 @default.
- W4308951285 cites W4213450433 @default.
- W4308951285 cites W4221042482 @default.
- W4308951285 cites W4223478843 @default.
- W4308951285 cites W4223560220 @default.
- W4308951285 cites W4223926961 @default.
- W4308951285 cites W4225243270 @default.
- W4308951285 cites W4280559001 @default.
- W4308951285 cites W4280587497 @default.
- W4308951285 cites W4281651325 @default.
- W4308951285 cites W4283826931 @default.
- W4308951285 cites W4284879862 @default.
- W4308951285 cites W4289835523 @default.
- W4308951285 cites W4292690740 @default.
- W4308951285 cites W4292814179 @default.
- W4308951285 cites W4294042833 @default.
- W4308951285 cites W4294864079 @default.
- W4308951285 cites W4295015172 @default.
- W4308951285 cites W4301397966 @default.
- W4308951285 cites W4307248173 @default.
- W4308951285 doi "https://doi.org/10.1016/j.energy.2022.126100" @default.
- W4308951285 hasPublicationYear "2023" @default.
- W4308951285 type Work @default.
- W4308951285 citedByCount "22" @default.
- W4308951285 countsByYear W43089512852022 @default.
- W4308951285 countsByYear W43089512852023 @default.
- W4308951285 crossrefType "journal-article" @default.
- W4308951285 hasAuthorship W4308951285A5008829405 @default.
- W4308951285 hasAuthorship W4308951285A5051989160 @default.
- W4308951285 hasConcept C119857082 @default.
- W4308951285 hasConcept C124101348 @default.
- W4308951285 hasConcept C138885662 @default.
- W4308951285 hasConcept C148483581 @default.
- W4308951285 hasConcept C154945302 @default.
- W4308951285 hasConcept C2776401178 @default.
- W4308951285 hasConcept C41008148 @default.
- W4308951285 hasConcept C41895202 @default.
- W4308951285 hasConcept C73555534 @default.
- W4308951285 hasConceptScore W4308951285C119857082 @default.
- W4308951285 hasConceptScore W4308951285C124101348 @default.
- W4308951285 hasConceptScore W4308951285C138885662 @default.
- W4308951285 hasConceptScore W4308951285C148483581 @default.
- W4308951285 hasConceptScore W4308951285C154945302 @default.
- W4308951285 hasConceptScore W4308951285C2776401178 @default.
- W4308951285 hasConceptScore W4308951285C41008148 @default.
- W4308951285 hasConceptScore W4308951285C41895202 @default.
- W4308951285 hasConceptScore W4308951285C73555534 @default.
- W4308951285 hasFunder F4320321001 @default.
- W4308951285 hasLocation W43089512851 @default.
- W4308951285 hasOpenAccess W4308951285 @default.
- W4308951285 hasPrimaryLocation W43089512851 @default.
- W4308951285 hasRelatedWork W1534720161 @default.
- W4308951285 hasRelatedWork W2083665254 @default.
- W4308951285 hasRelatedWork W2132641928 @default.
- W4308951285 hasRelatedWork W2393816671 @default.
- W4308951285 hasRelatedWork W2804364458 @default.
- W4308951285 hasRelatedWork W2804957450 @default.
- W4308951285 hasRelatedWork W2952668426 @default.
- W4308951285 hasRelatedWork W4298130764 @default.
- W4308951285 hasRelatedWork W4310225030 @default.
- W4308951285 hasRelatedWork W4386564352 @default.
- W4308951285 hasVolume "263" @default.
- W4308951285 isParatext "false" @default.
- W4308951285 isRetracted "false" @default.
- W4308951285 workType "article" @default.