Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308951978> ?p ?o ?g. }
- W4308951978 endingPage "530" @default.
- W4308951978 startingPage "517" @default.
- W4308951978 abstract "Purpose of this paper is the presentation of a novel Machine Learning (ML) technique for nanoscopic study of thin nanoplates. The second-order strain gradient theory is used to derive the governing equations and account for size effects. The ML framework is based on Physics-Informed Neural Networks (PINNs), a new concept of Artificial Neural Networks (ANNs) enriched with the mathematical model of the problem. Training of PINNs is performed using a highly efficient learning algorithm, known as Extreme Learning Machine (ELM). Two applications of this ANNs-based method are illustrated: solution of the Partial Differential Equations (PDEs) modeling the flexural response of thin nanoplates (direct problem), and identification of the length scale parameter of the nanoplate mathematical model with the aid of measurement data (inverse problem). Comparison with analytical and Finite Element (FE) solutions demonstrate the accuracy and efficiency of this ML framework as meshfree solver of high-order PDEs. The stability and reliability of the present method are verified through parameter studies on hyperparameters, network architectures, data noise and training initializations. The results presented give evidence of the effectiveness and robustness of this new ML approach for solving both direct and inverse nanoplate problems." @default.
- W4308951978 created "2022-11-20" @default.
- W4308951978 creator A5040401126 @default.
- W4308951978 creator A5042346338 @default.
- W4308951978 creator A5047608315 @default.
- W4308951978 date "2023-01-01" @default.
- W4308951978 modified "2023-10-17" @default.
- W4308951978 title "A neural network-based approach for bending analysis of strain gradient nanoplates" @default.
- W4308951978 cites W1965135771 @default.
- W4308951978 cites W1971717868 @default.
- W4308951978 cites W1994225683 @default.
- W4308951978 cites W1997997103 @default.
- W4308951978 cites W1998494366 @default.
- W4308951978 cites W1999544762 @default.
- W4308951978 cites W2013019768 @default.
- W4308951978 cites W2015338034 @default.
- W4308951978 cites W2028283910 @default.
- W4308951978 cites W2029742262 @default.
- W4308951978 cites W2050938834 @default.
- W4308951978 cites W2054009965 @default.
- W4308951978 cites W2076436283 @default.
- W4308951978 cites W2078233671 @default.
- W4308951978 cites W2111072639 @default.
- W4308951978 cites W2131298010 @default.
- W4308951978 cites W2143707612 @default.
- W4308951978 cites W2144553955 @default.
- W4308951978 cites W2502356463 @default.
- W4308951978 cites W2764034312 @default.
- W4308951978 cites W2790679314 @default.
- W4308951978 cites W2883483641 @default.
- W4308951978 cites W2884621046 @default.
- W4308951978 cites W2890968382 @default.
- W4308951978 cites W2899283552 @default.
- W4308951978 cites W2904446152 @default.
- W4308951978 cites W2942896733 @default.
- W4308951978 cites W2949698082 @default.
- W4308951978 cites W2985043051 @default.
- W4308951978 cites W2998847955 @default.
- W4308951978 cites W3014156810 @default.
- W4308951978 cites W3031078665 @default.
- W4308951978 cites W3041935533 @default.
- W4308951978 cites W3087259339 @default.
- W4308951978 cites W3092020108 @default.
- W4308951978 cites W3137392741 @default.
- W4308951978 cites W3192711574 @default.
- W4308951978 cites W3207090503 @default.
- W4308951978 cites W3217271320 @default.
- W4308951978 cites W4214863413 @default.
- W4308951978 cites W4224100510 @default.
- W4308951978 cites W4288050020 @default.
- W4308951978 doi "https://doi.org/10.1016/j.enganabound.2022.10.017" @default.
- W4308951978 hasPublicationYear "2023" @default.
- W4308951978 type Work @default.
- W4308951978 citedByCount "4" @default.
- W4308951978 countsByYear W43089519782023 @default.
- W4308951978 crossrefType "journal-article" @default.
- W4308951978 hasAuthorship W4308951978A5040401126 @default.
- W4308951978 hasAuthorship W4308951978A5042346338 @default.
- W4308951978 hasAuthorship W4308951978A5047608315 @default.
- W4308951978 hasConcept C104317684 @default.
- W4308951978 hasConcept C112972136 @default.
- W4308951978 hasConcept C11413529 @default.
- W4308951978 hasConcept C119857082 @default.
- W4308951978 hasConcept C121332964 @default.
- W4308951978 hasConcept C126255220 @default.
- W4308951978 hasConcept C134306372 @default.
- W4308951978 hasConcept C135252773 @default.
- W4308951978 hasConcept C135628077 @default.
- W4308951978 hasConcept C154945302 @default.
- W4308951978 hasConcept C185592680 @default.
- W4308951978 hasConcept C199360897 @default.
- W4308951978 hasConcept C2778770139 @default.
- W4308951978 hasConcept C28826006 @default.
- W4308951978 hasConcept C32230216 @default.
- W4308951978 hasConcept C33923547 @default.
- W4308951978 hasConcept C41008148 @default.
- W4308951978 hasConcept C50644808 @default.
- W4308951978 hasConcept C55493867 @default.
- W4308951978 hasConcept C63479239 @default.
- W4308951978 hasConcept C81184566 @default.
- W4308951978 hasConcept C8642999 @default.
- W4308951978 hasConcept C97355855 @default.
- W4308951978 hasConceptScore W4308951978C104317684 @default.
- W4308951978 hasConceptScore W4308951978C112972136 @default.
- W4308951978 hasConceptScore W4308951978C11413529 @default.
- W4308951978 hasConceptScore W4308951978C119857082 @default.
- W4308951978 hasConceptScore W4308951978C121332964 @default.
- W4308951978 hasConceptScore W4308951978C126255220 @default.
- W4308951978 hasConceptScore W4308951978C134306372 @default.
- W4308951978 hasConceptScore W4308951978C135252773 @default.
- W4308951978 hasConceptScore W4308951978C135628077 @default.
- W4308951978 hasConceptScore W4308951978C154945302 @default.
- W4308951978 hasConceptScore W4308951978C185592680 @default.
- W4308951978 hasConceptScore W4308951978C199360897 @default.
- W4308951978 hasConceptScore W4308951978C2778770139 @default.
- W4308951978 hasConceptScore W4308951978C28826006 @default.
- W4308951978 hasConceptScore W4308951978C32230216 @default.
- W4308951978 hasConceptScore W4308951978C33923547 @default.