Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308956487> ?p ?o ?g. }
- W4308956487 endingPage "4755" @default.
- W4308956487 startingPage "4749" @default.
- W4308956487 abstract "Colorimetric paper sensors are used in various fields due to their convenience and intuitive manner. However, these sensors present low accuracy in practical use because it is difficult to distinguish color changes for a minute amount of analyte with the naked eye. Herein, we demonstrate that a machine learning (ML)-based paper sensor platform accurately determines the color changes. We fabricated a colorimetric paper sensor by adsorbing polyaniline nanoparticles (PAni-NPs), whose color changes from blue to green when the ambient pH decreases. Adding glucose oxidase (GOx) to the paper sensor enables colorimetric glucose detection. Target analytes (10 μL) were aliquoted onto the paper sensors, and their images were taken with a smartphone under the same conditions in a darkroom. The red-green-blue (RGB) data from the images were extracted and used to train and test three regression models: support vector regression (SVR), decision tree regression (DTR), and random forest regression (RFR). Of the three regression models, RFR performed the best at estimating pH levels (R2 = 0.957) ranging from pH 2 to 10 and glucose concentrations (R2 = 0.922) ranging from 0 to 10 mg mL-1." @default.
- W4308956487 created "2022-11-20" @default.
- W4308956487 creator A5002903966 @default.
- W4308956487 creator A5006008510 @default.
- W4308956487 creator A5010143392 @default.
- W4308956487 creator A5025781007 @default.
- W4308956487 creator A5029318660 @default.
- W4308956487 creator A5032566019 @default.
- W4308956487 creator A5032687433 @default.
- W4308956487 creator A5034240157 @default.
- W4308956487 creator A5043870102 @default.
- W4308956487 creator A5081393695 @default.
- W4308956487 date "2022-01-01" @default.
- W4308956487 modified "2023-10-17" @default.
- W4308956487 title "A regression-based machine learning approach for pH and glucose detection with redox-sensitive colorimetric paper sensors" @default.
- W4308956487 cites W1968288141 @default.
- W4308956487 cites W2022864007 @default.
- W4308956487 cites W2033869170 @default.
- W4308956487 cites W2063641411 @default.
- W4308956487 cites W2063925638 @default.
- W4308956487 cites W2076997095 @default.
- W4308956487 cites W2077484499 @default.
- W4308956487 cites W2093936703 @default.
- W4308956487 cites W2096158882 @default.
- W4308956487 cites W2140415161 @default.
- W4308956487 cites W2141259981 @default.
- W4308956487 cites W2165187062 @default.
- W4308956487 cites W224127151 @default.
- W4308956487 cites W2261457775 @default.
- W4308956487 cites W2278075669 @default.
- W4308956487 cites W2335991007 @default.
- W4308956487 cites W2467654285 @default.
- W4308956487 cites W2533382904 @default.
- W4308956487 cites W2570632582 @default.
- W4308956487 cites W2601808138 @default.
- W4308956487 cites W2606945370 @default.
- W4308956487 cites W2610975524 @default.
- W4308956487 cites W2618377980 @default.
- W4308956487 cites W2760481920 @default.
- W4308956487 cites W2766910999 @default.
- W4308956487 cites W2774023049 @default.
- W4308956487 cites W2789118311 @default.
- W4308956487 cites W2804276410 @default.
- W4308956487 cites W2810469976 @default.
- W4308956487 cites W2895681293 @default.
- W4308956487 cites W2899996402 @default.
- W4308956487 cites W2900844982 @default.
- W4308956487 cites W2909255220 @default.
- W4308956487 cites W2914059200 @default.
- W4308956487 cites W2934837160 @default.
- W4308956487 cites W2945240707 @default.
- W4308956487 cites W2985643512 @default.
- W4308956487 cites W2999747699 @default.
- W4308956487 cites W3094073235 @default.
- W4308956487 cites W3100709371 @default.
- W4308956487 cites W3108178631 @default.
- W4308956487 cites W3131374558 @default.
- W4308956487 cites W3136474163 @default.
- W4308956487 cites W3174937970 @default.
- W4308956487 cites W3195386287 @default.
- W4308956487 cites W4211214771 @default.
- W4308956487 cites W4220680716 @default.
- W4308956487 cites W4220870883 @default.
- W4308956487 cites W4223980695 @default.
- W4308956487 cites W4232138652 @default.
- W4308956487 cites W4243841175 @default.
- W4308956487 cites W4247910510 @default.
- W4308956487 cites W4253393964 @default.
- W4308956487 cites W4255177608 @default.
- W4308956487 cites W44929223 @default.
- W4308956487 cites W4253520045 @default.
- W4308956487 doi "https://doi.org/10.1039/d2ay01329k" @default.
- W4308956487 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36373210" @default.
- W4308956487 hasPublicationYear "2022" @default.
- W4308956487 type Work @default.
- W4308956487 citedByCount "1" @default.
- W4308956487 countsByYear W43089564872023 @default.
- W4308956487 crossrefType "journal-article" @default.
- W4308956487 hasAuthorship W4308956487A5002903966 @default.
- W4308956487 hasAuthorship W4308956487A5006008510 @default.
- W4308956487 hasAuthorship W4308956487A5010143392 @default.
- W4308956487 hasAuthorship W4308956487A5025781007 @default.
- W4308956487 hasAuthorship W4308956487A5029318660 @default.
- W4308956487 hasAuthorship W4308956487A5032566019 @default.
- W4308956487 hasAuthorship W4308956487A5032687433 @default.
- W4308956487 hasAuthorship W4308956487A5034240157 @default.
- W4308956487 hasAuthorship W4308956487A5043870102 @default.
- W4308956487 hasAuthorship W4308956487A5081393695 @default.
- W4308956487 hasConcept C10390740 @default.
- W4308956487 hasConcept C105795698 @default.
- W4308956487 hasConcept C115051666 @default.
- W4308956487 hasConcept C119857082 @default.
- W4308956487 hasConcept C12267149 @default.
- W4308956487 hasConcept C152877465 @default.
- W4308956487 hasConcept C154945302 @default.
- W4308956487 hasConcept C169258074 @default.
- W4308956487 hasConcept C185592680 @default.
- W4308956487 hasConcept C31972630 @default.