Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308973963> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4308973963 endingPage "11529" @default.
- W4308973963 startingPage "11529" @default.
- W4308973963 abstract "Poorly maintained roads can cause lethal automobile accidents in various ways. Thus, detecting and reporting damaged parts of roads is one of the most crucial road maintenance tasks, and it is vital to identify the type and severity of the damage to help fix it as soon as possible. Several researchers have used computer vision and detection algorithms to detect and classify road damages, including cracking, distortion, and disintegration. Providing automatic road damage detection methods can help municipalities save time and effort and speed up maintenance operations. This study proposes a method to classify road damage and its severity based on CNN and trained on a newly curated dataset collected from Saudi roads. Hence, this study also presents a dataset with labeled classes, which are cracks, potholes, depressions, and shoving. The dataset was collected in collaboration with maintenance employees in the municipality of Rabigh Governorate using a smartphone device and reviewed by experts. In addition, several deep learning algorithms were implemented and evaluated using the proposed dataset. The study found that the proposed custom CNN (RoadNet) has higher accuracy than pre-trained models." @default.
- W4308973963 created "2022-11-20" @default.
- W4308973963 creator A5011059494 @default.
- W4308973963 creator A5037190453 @default.
- W4308973963 creator A5051363733 @default.
- W4308973963 creator A5074066431 @default.
- W4308973963 date "2022-11-13" @default.
- W4308973963 modified "2023-10-16" @default.
- W4308973963 title "RoadNet: Efficient Model to Detect and Classify Road Damages" @default.
- W4308973963 cites W2069182664 @default.
- W4308973963 cites W2133059825 @default.
- W4308973963 cites W2194775991 @default.
- W4308973963 cites W2407692387 @default.
- W4308973963 cites W2511065100 @default.
- W4308973963 cites W2523358814 @default.
- W4308973963 cites W2626688319 @default.
- W4308973963 cites W2748643398 @default.
- W4308973963 cites W2748746495 @default.
- W4308973963 cites W2809991812 @default.
- W4308973963 cites W2810188946 @default.
- W4308973963 cites W2906977256 @default.
- W4308973963 cites W2913071089 @default.
- W4308973963 cites W2913930668 @default.
- W4308973963 cites W2963459241 @default.
- W4308973963 cites W2970332685 @default.
- W4308973963 cites W2970362668 @default.
- W4308973963 cites W2978200937 @default.
- W4308973963 cites W3049442390 @default.
- W4308973963 cites W3083925057 @default.
- W4308973963 cites W3096338035 @default.
- W4308973963 cites W3106893417 @default.
- W4308973963 cites W3124942917 @default.
- W4308973963 cites W3133871530 @default.
- W4308973963 cites W3136219530 @default.
- W4308973963 cites W3136227916 @default.
- W4308973963 cites W3136611617 @default.
- W4308973963 cites W3136965486 @default.
- W4308973963 cites W3137017695 @default.
- W4308973963 cites W3161660388 @default.
- W4308973963 cites W3172600964 @default.
- W4308973963 cites W3203118993 @default.
- W4308973963 cites W4225137532 @default.
- W4308973963 doi "https://doi.org/10.3390/app122211529" @default.
- W4308973963 hasPublicationYear "2022" @default.
- W4308973963 type Work @default.
- W4308973963 citedByCount "4" @default.
- W4308973963 countsByYear W43089739632023 @default.
- W4308973963 crossrefType "journal-article" @default.
- W4308973963 hasAuthorship W4308973963A5011059494 @default.
- W4308973963 hasAuthorship W4308973963A5037190453 @default.
- W4308973963 hasAuthorship W4308973963A5051363733 @default.
- W4308973963 hasAuthorship W4308973963A5074066431 @default.
- W4308973963 hasBestOaLocation W43089739631 @default.
- W4308973963 hasConcept C119857082 @default.
- W4308973963 hasConcept C127413603 @default.
- W4308973963 hasConcept C154945302 @default.
- W4308973963 hasConcept C17744445 @default.
- W4308973963 hasConcept C199539241 @default.
- W4308973963 hasConcept C22212356 @default.
- W4308973963 hasConcept C2777381055 @default.
- W4308973963 hasConcept C41008148 @default.
- W4308973963 hasConceptScore W4308973963C119857082 @default.
- W4308973963 hasConceptScore W4308973963C127413603 @default.
- W4308973963 hasConceptScore W4308973963C154945302 @default.
- W4308973963 hasConceptScore W4308973963C17744445 @default.
- W4308973963 hasConceptScore W4308973963C199539241 @default.
- W4308973963 hasConceptScore W4308973963C22212356 @default.
- W4308973963 hasConceptScore W4308973963C2777381055 @default.
- W4308973963 hasConceptScore W4308973963C41008148 @default.
- W4308973963 hasIssue "22" @default.
- W4308973963 hasLocation W43089739631 @default.
- W4308973963 hasOpenAccess W4308973963 @default.
- W4308973963 hasPrimaryLocation W43089739631 @default.
- W4308973963 hasRelatedWork W2961085424 @default.
- W4308973963 hasRelatedWork W3046775127 @default.
- W4308973963 hasRelatedWork W3170094116 @default.
- W4308973963 hasRelatedWork W3209574120 @default.
- W4308973963 hasRelatedWork W4205958290 @default.
- W4308973963 hasRelatedWork W4285260836 @default.
- W4308973963 hasRelatedWork W4286629047 @default.
- W4308973963 hasRelatedWork W4306321456 @default.
- W4308973963 hasRelatedWork W4306674287 @default.
- W4308973963 hasRelatedWork W4224009465 @default.
- W4308973963 hasVolume "12" @default.
- W4308973963 isParatext "false" @default.
- W4308973963 isRetracted "false" @default.
- W4308973963 workType "article" @default.