Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308975377> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4308975377 endingPage "3711" @default.
- W4308975377 startingPage "3711" @default.
- W4308975377 abstract "Seasonal influenza (also known as flu) is responsible for considerable morbidity and mortality across the globe. The three recognized pathogens that cause epidemics during the winter season are influenza A, B and C. The influenza virus is particularly dangerous due to its mutability. Vaccines are an effective tool in preventing seasonal influenza, and their formulas are updated yearly according to the WHO recommendations. However, in order to facilitate decision-making in the planning of the intervention, policymakers need information on the projected costs and quantities related to introducing the influenza vaccine in order to help governments obtain an optimal allocation of the vaccine each year. In this paper, an approach based on a Controlled Elitism Non-Dominated Sorting Genetic Algorithm (CENSGA) model is introduced to optimize the allocation of the influenza vaccination. A bi-objective model is formulated to control the infection volume, and reduce the unit cost of the vaccination campaign. An SIR (Susceptible–Infected–Recovered) model is employed for representing a potential epidemic. The model constraints are based on the epidemiological model, time management and vaccine quantity. A two-phase optimization process is proposed: guardian control followed by contingent controls. The proposed approach is an evolutionary metaheuristic multi-objective optimization algorithm with a local search procedure based on a hash table. Moreover, in order to optimize the scheduling of a set of policies over a predetermined time to form a complete campaign, an extended CENSGA is introduced with a variable-length chromosome (VLC) along with mutation and crossover operations. To validate the applicability of the proposed CENSGA, it is compared with the classical Non-Dominated Sorting Genetic Algorithm (NSGA-II). The results indicate that optimal vaccination campaigns with compromise tradeoffs between the two conflicting objectives can be designed effectively using CENSGA, providing policymakers with a number of alternatives to accommodate the best strategies. The results are analyzed using graphical and statistical comparisons in terms of cardinality, convergence, distribution and spread quality metrics, illustrating that the proposed CENSGA is effective and useful for determining the optimal vaccination allocation campaigns." @default.
- W4308975377 created "2022-11-20" @default.
- W4308975377 creator A5008348653 @default.
- W4308975377 creator A5050226997 @default.
- W4308975377 date "2022-11-13" @default.
- W4308975377 modified "2023-09-30" @default.
- W4308975377 title "A Synthesis of Pulse Influenza Vaccination Policies Using an Efficient Controlled Elitism Non-Dominated Sorting Genetic Algorithm (CENSGA)" @default.
- W4308975377 cites W1968455782 @default.
- W4308975377 cites W1971901162 @default.
- W4308975377 cites W2020320008 @default.
- W4308975377 cites W2028226704 @default.
- W4308975377 cites W2031194329 @default.
- W4308975377 cites W2033426091 @default.
- W4308975377 cites W2035395392 @default.
- W4308975377 cites W2035692177 @default.
- W4308975377 cites W2062819689 @default.
- W4308975377 cites W2072804904 @default.
- W4308975377 cites W2079810016 @default.
- W4308975377 cites W2087366011 @default.
- W4308975377 cites W2103862045 @default.
- W4308975377 cites W2108362592 @default.
- W4308975377 cites W2126105956 @default.
- W4308975377 cites W2134378541 @default.
- W4308975377 cites W2141501264 @default.
- W4308975377 cites W2161728228 @default.
- W4308975377 cites W2163667267 @default.
- W4308975377 cites W2256777022 @default.
- W4308975377 cites W2293381390 @default.
- W4308975377 cites W2412288231 @default.
- W4308975377 cites W2549031483 @default.
- W4308975377 cites W2552831538 @default.
- W4308975377 cites W2801188659 @default.
- W4308975377 cites W2805441225 @default.
- W4308975377 cites W2884165914 @default.
- W4308975377 cites W2952391927 @default.
- W4308975377 cites W2955282476 @default.
- W4308975377 cites W2964217031 @default.
- W4308975377 cites W2967615141 @default.
- W4308975377 cites W2981907242 @default.
- W4308975377 cites W3038549077 @default.
- W4308975377 cites W3105444733 @default.
- W4308975377 cites W3155998565 @default.
- W4308975377 cites W3166937366 @default.
- W4308975377 cites W3174524712 @default.
- W4308975377 cites W3200829076 @default.
- W4308975377 cites W4206574885 @default.
- W4308975377 cites W4221082445 @default.
- W4308975377 cites W4238086324 @default.
- W4308975377 cites W4249086114 @default.
- W4308975377 cites W4280515860 @default.
- W4308975377 doi "https://doi.org/10.3390/electronics11223711" @default.
- W4308975377 hasPublicationYear "2022" @default.
- W4308975377 type Work @default.
- W4308975377 citedByCount "0" @default.
- W4308975377 crossrefType "journal-article" @default.
- W4308975377 hasAuthorship W4308975377A5008348653 @default.
- W4308975377 hasAuthorship W4308975377A5050226997 @default.
- W4308975377 hasBestOaLocation W43089753771 @default.
- W4308975377 hasConcept C126255220 @default.
- W4308975377 hasConcept C159047783 @default.
- W4308975377 hasConcept C22070199 @default.
- W4308975377 hasConcept C33923547 @default.
- W4308975377 hasConcept C41008148 @default.
- W4308975377 hasConcept C42475967 @default.
- W4308975377 hasConcept C71924100 @default.
- W4308975377 hasConcept C8880873 @default.
- W4308975377 hasConceptScore W4308975377C126255220 @default.
- W4308975377 hasConceptScore W4308975377C159047783 @default.
- W4308975377 hasConceptScore W4308975377C22070199 @default.
- W4308975377 hasConceptScore W4308975377C33923547 @default.
- W4308975377 hasConceptScore W4308975377C41008148 @default.
- W4308975377 hasConceptScore W4308975377C42475967 @default.
- W4308975377 hasConceptScore W4308975377C71924100 @default.
- W4308975377 hasConceptScore W4308975377C8880873 @default.
- W4308975377 hasIssue "22" @default.
- W4308975377 hasLocation W43089753771 @default.
- W4308975377 hasLocation W43089753772 @default.
- W4308975377 hasLocation W43089753773 @default.
- W4308975377 hasOpenAccess W4308975377 @default.
- W4308975377 hasPrimaryLocation W43089753771 @default.
- W4308975377 hasRelatedWork W2033002572 @default.
- W4308975377 hasRelatedWork W2098882706 @default.
- W4308975377 hasRelatedWork W2124269997 @default.
- W4308975377 hasRelatedWork W2129795722 @default.
- W4308975377 hasRelatedWork W2366525864 @default.
- W4308975377 hasRelatedWork W2375660666 @default.
- W4308975377 hasRelatedWork W2592595549 @default.
- W4308975377 hasRelatedWork W2743228640 @default.
- W4308975377 hasRelatedWork W4312420408 @default.
- W4308975377 hasRelatedWork W4379984321 @default.
- W4308975377 hasVolume "11" @default.
- W4308975377 isParatext "false" @default.
- W4308975377 isRetracted "false" @default.
- W4308975377 workType "article" @default.