Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308985287> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4308985287 endingPage "101" @default.
- W4308985287 startingPage "93" @default.
- W4308985287 abstract "Virtual assistants are touching everyone's life each day by optimizing the digital experience of many of the tasks. Either it be an instruction to play a song on Amazon's Alexa or to know the traffic on Google's Assistant, we are using these assistants. By changing these broad tasks into a localized set of tasks for an organization-only use, we can convert these assistants to be in operations as a virtual receptionist. This article focuses on the use of natural language processing and supervised learning to train a virtual assistant to be operated as a virtual receptionist. In this time of COVID, where the front desk admin/receptionists are more prone to get infected due to the direct contact with people visiting the organization, a virtual receptionist will try to replicate the task done by the human receptionist. This will digitalize the way information is rendered between third parties and receptionists as well as remove any possibilities of manual errors. Problems like long queues at reception, communication gaps, etc., can be solved as a machine won’t have biases as seen with humans. Similarly, using sensors and Internet of Things technology, many new features can be added to this system according to the need of any organization." @default.
- W4308985287 created "2022-11-20" @default.
- W4308985287 creator A5045914655 @default.
- W4308985287 creator A5070499132 @default.
- W4308985287 date "2022-11-15" @default.
- W4308985287 modified "2023-09-23" @default.
- W4308985287 title "Application of Natural Language Processing and IoT to Emulate Virtual Receptionist" @default.
- W4308985287 doi "https://doi.org/10.1201/9781003355960-6" @default.
- W4308985287 hasPublicationYear "2022" @default.
- W4308985287 type Work @default.
- W4308985287 citedByCount "0" @default.
- W4308985287 crossrefType "book-chapter" @default.
- W4308985287 hasAuthorship W4308985287A5045914655 @default.
- W4308985287 hasAuthorship W4308985287A5070499132 @default.
- W4308985287 hasConcept C107457646 @default.
- W4308985287 hasConcept C136764020 @default.
- W4308985287 hasConcept C15744967 @default.
- W4308985287 hasConcept C166957645 @default.
- W4308985287 hasConcept C205649164 @default.
- W4308985287 hasConcept C2776608160 @default.
- W4308985287 hasConcept C41008148 @default.
- W4308985287 hasConcept C46312422 @default.
- W4308985287 hasConcept C81860439 @default.
- W4308985287 hasConceptScore W4308985287C107457646 @default.
- W4308985287 hasConceptScore W4308985287C136764020 @default.
- W4308985287 hasConceptScore W4308985287C15744967 @default.
- W4308985287 hasConceptScore W4308985287C166957645 @default.
- W4308985287 hasConceptScore W4308985287C205649164 @default.
- W4308985287 hasConceptScore W4308985287C2776608160 @default.
- W4308985287 hasConceptScore W4308985287C41008148 @default.
- W4308985287 hasConceptScore W4308985287C46312422 @default.
- W4308985287 hasConceptScore W4308985287C81860439 @default.
- W4308985287 hasLocation W43089852871 @default.
- W4308985287 hasOpenAccess W4308985287 @default.
- W4308985287 hasPrimaryLocation W43089852871 @default.
- W4308985287 hasRelatedWork W2550930058 @default.
- W4308985287 hasRelatedWork W2618984630 @default.
- W4308985287 hasRelatedWork W2751166006 @default.
- W4308985287 hasRelatedWork W2775965274 @default.
- W4308985287 hasRelatedWork W2807530277 @default.
- W4308985287 hasRelatedWork W2970262160 @default.
- W4308985287 hasRelatedWork W3027691494 @default.
- W4308985287 hasRelatedWork W3081898826 @default.
- W4308985287 hasRelatedWork W3203217542 @default.
- W4308985287 hasRelatedWork W4296982580 @default.
- W4308985287 isParatext "false" @default.
- W4308985287 isRetracted "false" @default.
- W4308985287 workType "book-chapter" @default.