Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308992248> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4308992248 abstract "Abstract Motivation: Breakthroughs in high-throughput technologies and machine learning methods have enabled the shift towards multi-omics modeling as the preferred mean to understand the mechanisms underlying biological processes, and to improve complex disease prognosis in clinical settings. However, most multi-omic studies only use transcriptomics and epigenomics due to their over-representation in databases and their early technical maturity compared to others omics. For complex phenotypes and mechanisms, not leveraging all the omics despite their varying degree of availability can lead to a failure to understand the underlying biological mechanisms. Results: We proposed MOT (Multi-Omic Transformer), a deep learning based model using the transformer architecture, that discriminates complex phenotypes (herein cancers types) based on five omics data type regardless of their availability: transcriptomics (mRNA and miRNA), epigenomics (DNA methylation), copy number variations (CNVs), and proteomics. At its core, MOT uses a data augmentation scheme that allows it to handle missing omics views and its attention layers give a macro level of interpretability for each phenotypes. Indeed, MOT identifies the required omic type for the best prediction for each phenotype and therefore could guide clinical decision making when acquiring data to confirm a diagnostic. It achieves an accuracy score of 96.04% after 5-fold cross-validation among 33 tumour types. The newly introduced model can integrate and analyse five different omics data while handling the missing omics views and can also identify the essential omics data for the tumour multiclass classification tasks. Availability and implementation: MOT source code is available at https://github.com/dizam92/multiomic_predictions." @default.
- W4308992248 created "2022-11-20" @default.
- W4308992248 creator A5008649323 @default.
- W4308992248 creator A5029191386 @default.
- W4308992248 creator A5037753193 @default.
- W4308992248 creator A5054812796 @default.
- W4308992248 date "2022-11-14" @default.
- W4308992248 modified "2023-10-15" @default.
- W4308992248 title "MOT: a Multi-Omics Transformer for multiclass classification tumour types predictions" @default.
- W4308992248 doi "https://doi.org/10.21203/rs.3.rs-1348696/v2" @default.
- W4308992248 hasPublicationYear "2022" @default.
- W4308992248 type Work @default.
- W4308992248 citedByCount "0" @default.
- W4308992248 crossrefType "posted-content" @default.
- W4308992248 hasAuthorship W4308992248A5008649323 @default.
- W4308992248 hasAuthorship W4308992248A5029191386 @default.
- W4308992248 hasAuthorship W4308992248A5037753193 @default.
- W4308992248 hasAuthorship W4308992248A5054812796 @default.
- W4308992248 hasBestOaLocation W43089922481 @default.
- W4308992248 hasConcept C104317684 @default.
- W4308992248 hasConcept C119857082 @default.
- W4308992248 hasConcept C121912465 @default.
- W4308992248 hasConcept C138958017 @default.
- W4308992248 hasConcept C150194340 @default.
- W4308992248 hasConcept C154945302 @default.
- W4308992248 hasConcept C157585117 @default.
- W4308992248 hasConcept C190727270 @default.
- W4308992248 hasConcept C199360897 @default.
- W4308992248 hasConcept C21565614 @default.
- W4308992248 hasConcept C2781067378 @default.
- W4308992248 hasConcept C41008148 @default.
- W4308992248 hasConcept C46111723 @default.
- W4308992248 hasConcept C55493867 @default.
- W4308992248 hasConcept C60644358 @default.
- W4308992248 hasConcept C70721500 @default.
- W4308992248 hasConcept C86803240 @default.
- W4308992248 hasConceptScore W4308992248C104317684 @default.
- W4308992248 hasConceptScore W4308992248C119857082 @default.
- W4308992248 hasConceptScore W4308992248C121912465 @default.
- W4308992248 hasConceptScore W4308992248C138958017 @default.
- W4308992248 hasConceptScore W4308992248C150194340 @default.
- W4308992248 hasConceptScore W4308992248C154945302 @default.
- W4308992248 hasConceptScore W4308992248C157585117 @default.
- W4308992248 hasConceptScore W4308992248C190727270 @default.
- W4308992248 hasConceptScore W4308992248C199360897 @default.
- W4308992248 hasConceptScore W4308992248C21565614 @default.
- W4308992248 hasConceptScore W4308992248C2781067378 @default.
- W4308992248 hasConceptScore W4308992248C41008148 @default.
- W4308992248 hasConceptScore W4308992248C46111723 @default.
- W4308992248 hasConceptScore W4308992248C55493867 @default.
- W4308992248 hasConceptScore W4308992248C60644358 @default.
- W4308992248 hasConceptScore W4308992248C70721500 @default.
- W4308992248 hasConceptScore W4308992248C86803240 @default.
- W4308992248 hasLocation W43089922481 @default.
- W4308992248 hasLocation W43089922482 @default.
- W4308992248 hasOpenAccess W4308992248 @default.
- W4308992248 hasPrimaryLocation W43089922481 @default.
- W4308992248 hasRelatedWork W2104887694 @default.
- W4308992248 hasRelatedWork W2152476191 @default.
- W4308992248 hasRelatedWork W2892618895 @default.
- W4308992248 hasRelatedWork W2988616857 @default.
- W4308992248 hasRelatedWork W3093552705 @default.
- W4308992248 hasRelatedWork W3174074244 @default.
- W4308992248 hasRelatedWork W3199823872 @default.
- W4308992248 hasRelatedWork W4211199671 @default.
- W4308992248 hasRelatedWork W4212979668 @default.
- W4308992248 hasRelatedWork W4317567415 @default.
- W4308992248 isParatext "false" @default.
- W4308992248 isRetracted "false" @default.
- W4308992248 workType "article" @default.