Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308993319> ?p ?o ?g. }
- W4308993319 endingPage "e0277555" @default.
- W4308993319 startingPage "e0277555" @default.
- W4308993319 abstract "The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate. This is a time-consuming, error-prone, subjective, and exhausting process. Moreover, recent advances in EEG classification have mostly focused on classifying patients of a specific disease from healthy subjects using EEG data, which is not cost effective as it requires multiple systems for checking a subject’s EEG data for different neurological disorders. This forces researchers to advance their work and create a single, unified classification framework for identifying various neurological diseases from EEG signal data. Hence, this study aims to meet this requirement by developing a machine learning (ML) based data mining technique for categorizing multiple abnormalities from EEG data. Textural feature extractors and ML-based classifiers are used on time-frequency spectrogram images to develop the classification system. Initially, noises and artifacts are removed from the signal using filtering techniques and then normalized to reduce computational complexity. Afterwards, normalized signals are segmented into small time segments and spectrogram images are generated from those segments using short-time Fourier transform. Then two histogram based textural feature extractors are used to calculate features separately and principal component analysis is used to select significant features from the extracted features. Finally, four different ML based classifiers are used to categorize those selected features into different disease classes. The developed method is tested on four real-time EEG datasets. The obtained result has shown potential in classifying various abnormality types, indicating that it can be utilized to identify various neurological abnormalities from brain signal data." @default.
- W4308993319 created "2022-11-20" @default.
- W4308993319 creator A5009671435 @default.
- W4308993319 creator A5053725057 @default.
- W4308993319 creator A5057305454 @default.
- W4308993319 creator A5066110010 @default.
- W4308993319 date "2022-11-14" @default.
- W4308993319 modified "2023-10-17" @default.
- W4308993319 title "Textural feature based intelligent approach for neurological abnormality detection from brain signal data" @default.
- W4308993319 cites W1490503255 @default.
- W4308993319 cites W1674866864 @default.
- W4308993319 cites W1956054877 @default.
- W4308993319 cites W1979835117 @default.
- W4308993319 cites W2098844365 @default.
- W4308993319 cites W2113855951 @default.
- W4308993319 cites W2115126565 @default.
- W4308993319 cites W2122111042 @default.
- W4308993319 cites W2153635508 @default.
- W4308993319 cites W2171931442 @default.
- W4308993319 cites W2258541558 @default.
- W4308993319 cites W2492804124 @default.
- W4308993319 cites W2513925194 @default.
- W4308993319 cites W2524982237 @default.
- W4308993319 cites W2551054676 @default.
- W4308993319 cites W2562547616 @default.
- W4308993319 cites W2590940923 @default.
- W4308993319 cites W2606228039 @default.
- W4308993319 cites W2754994148 @default.
- W4308993319 cites W2756425885 @default.
- W4308993319 cites W2775399334 @default.
- W4308993319 cites W2788569254 @default.
- W4308993319 cites W2802719250 @default.
- W4308993319 cites W2843242420 @default.
- W4308993319 cites W2885805158 @default.
- W4308993319 cites W2889245000 @default.
- W4308993319 cites W2899900073 @default.
- W4308993319 cites W2911964244 @default.
- W4308993319 cites W2913887306 @default.
- W4308993319 cites W2915196348 @default.
- W4308993319 cites W2951453195 @default.
- W4308993319 cites W2979436483 @default.
- W4308993319 cites W2994841289 @default.
- W4308993319 cites W2996722826 @default.
- W4308993319 cites W3008330356 @default.
- W4308993319 cites W3020059240 @default.
- W4308993319 cites W3020837326 @default.
- W4308993319 cites W3027537128 @default.
- W4308993319 cites W3046632025 @default.
- W4308993319 cites W3080914981 @default.
- W4308993319 cites W3084085040 @default.
- W4308993319 cites W3090529350 @default.
- W4308993319 cites W3090594113 @default.
- W4308993319 cites W3092441108 @default.
- W4308993319 cites W3092502151 @default.
- W4308993319 cites W3092870704 @default.
- W4308993319 cites W3094421184 @default.
- W4308993319 cites W3148172507 @default.
- W4308993319 cites W3177132078 @default.
- W4308993319 cites W3187029107 @default.
- W4308993319 cites W3192451249 @default.
- W4308993319 cites W3207738141 @default.
- W4308993319 cites W4205371408 @default.
- W4308993319 cites W4205720508 @default.
- W4308993319 cites W4205941964 @default.
- W4308993319 cites W4224261289 @default.
- W4308993319 cites W4283766096 @default.
- W4308993319 cites W4293111498 @default.
- W4308993319 doi "https://doi.org/10.1371/journal.pone.0277555" @default.
- W4308993319 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36374850" @default.
- W4308993319 hasPublicationYear "2022" @default.
- W4308993319 type Work @default.
- W4308993319 citedByCount "2" @default.
- W4308993319 countsByYear W43089933192023 @default.
- W4308993319 crossrefType "journal-article" @default.
- W4308993319 hasAuthorship W4308993319A5009671435 @default.
- W4308993319 hasAuthorship W4308993319A5053725057 @default.
- W4308993319 hasAuthorship W4308993319A5057305454 @default.
- W4308993319 hasAuthorship W4308993319A5066110010 @default.
- W4308993319 hasBestOaLocation W43089933191 @default.
- W4308993319 hasConcept C115961682 @default.
- W4308993319 hasConcept C118552586 @default.
- W4308993319 hasConcept C119857082 @default.
- W4308993319 hasConcept C138885662 @default.
- W4308993319 hasConcept C153180895 @default.
- W4308993319 hasConcept C154945302 @default.
- W4308993319 hasConcept C199360897 @default.
- W4308993319 hasConcept C2776401178 @default.
- W4308993319 hasConcept C2779843651 @default.
- W4308993319 hasConcept C28490314 @default.
- W4308993319 hasConcept C41008148 @default.
- W4308993319 hasConcept C41895202 @default.
- W4308993319 hasConcept C45273575 @default.
- W4308993319 hasConcept C522805319 @default.
- W4308993319 hasConcept C52622490 @default.
- W4308993319 hasConcept C53533937 @default.
- W4308993319 hasConcept C71924100 @default.
- W4308993319 hasConceptScore W4308993319C115961682 @default.
- W4308993319 hasConceptScore W4308993319C118552586 @default.