Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309009346> ?p ?o ?g. }
- W4309009346 endingPage "14934" @default.
- W4309009346 startingPage "14934" @default.
- W4309009346 abstract "This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice." @default.
- W4309009346 created "2022-11-20" @default.
- W4309009346 creator A5016879648 @default.
- W4309009346 creator A5023008381 @default.
- W4309009346 creator A5029498525 @default.
- W4309009346 creator A5040432057 @default.
- W4309009346 creator A5048933897 @default.
- W4309009346 creator A5056053550 @default.
- W4309009346 creator A5071449426 @default.
- W4309009346 creator A5071490091 @default.
- W4309009346 creator A5073604279 @default.
- W4309009346 creator A5080361926 @default.
- W4309009346 date "2022-11-13" @default.
- W4309009346 modified "2023-09-29" @default.
- W4309009346 title "Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study" @default.
- W4309009346 cites W1590367461 @default.
- W4309009346 cites W1690919088 @default.
- W4309009346 cites W1928413428 @default.
- W4309009346 cites W1974231323 @default.
- W4309009346 cites W2007346645 @default.
- W4309009346 cites W2019176952 @default.
- W4309009346 cites W2033248592 @default.
- W4309009346 cites W2038327808 @default.
- W4309009346 cites W2042203976 @default.
- W4309009346 cites W2073852605 @default.
- W4309009346 cites W2105696986 @default.
- W4309009346 cites W2145427343 @default.
- W4309009346 cites W2154462763 @default.
- W4309009346 cites W2168345173 @default.
- W4309009346 cites W2254194197 @default.
- W4309009346 cites W2493724319 @default.
- W4309009346 cites W2516593410 @default.
- W4309009346 cites W2555814896 @default.
- W4309009346 cites W2765335380 @default.
- W4309009346 cites W2779889299 @default.
- W4309009346 cites W2786010338 @default.
- W4309009346 cites W2795629330 @default.
- W4309009346 cites W2899955363 @default.
- W4309009346 cites W2900777454 @default.
- W4309009346 cites W2909127866 @default.
- W4309009346 cites W2912386340 @default.
- W4309009346 cites W2945734765 @default.
- W4309009346 cites W2963929932 @default.
- W4309009346 cites W2984010107 @default.
- W4309009346 cites W2992985002 @default.
- W4309009346 cites W4238782688 @default.
- W4309009346 cites W4249182162 @default.
- W4309009346 cites W855558648 @default.
- W4309009346 doi "https://doi.org/10.3390/ijerph192214934" @default.
- W4309009346 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36429651" @default.
- W4309009346 hasPublicationYear "2022" @default.
- W4309009346 type Work @default.
- W4309009346 citedByCount "0" @default.
- W4309009346 crossrefType "journal-article" @default.
- W4309009346 hasAuthorship W4309009346A5016879648 @default.
- W4309009346 hasAuthorship W4309009346A5023008381 @default.
- W4309009346 hasAuthorship W4309009346A5029498525 @default.
- W4309009346 hasAuthorship W4309009346A5040432057 @default.
- W4309009346 hasAuthorship W4309009346A5048933897 @default.
- W4309009346 hasAuthorship W4309009346A5056053550 @default.
- W4309009346 hasAuthorship W4309009346A5071449426 @default.
- W4309009346 hasAuthorship W4309009346A5071490091 @default.
- W4309009346 hasAuthorship W4309009346A5073604279 @default.
- W4309009346 hasAuthorship W4309009346A5080361926 @default.
- W4309009346 hasBestOaLocation W43090093461 @default.
- W4309009346 hasConcept C105795698 @default.
- W4309009346 hasConcept C119857082 @default.
- W4309009346 hasConcept C139945424 @default.
- W4309009346 hasConcept C159110408 @default.
- W4309009346 hasConcept C21569690 @default.
- W4309009346 hasConcept C27415008 @default.
- W4309009346 hasConcept C2778671685 @default.
- W4309009346 hasConcept C2780662849 @default.
- W4309009346 hasConcept C3020395413 @default.
- W4309009346 hasConcept C31903555 @default.
- W4309009346 hasConcept C33923547 @default.
- W4309009346 hasConcept C41008148 @default.
- W4309009346 hasConcept C557471498 @default.
- W4309009346 hasConcept C71924100 @default.
- W4309009346 hasConcept C86803240 @default.
- W4309009346 hasConcept C99454951 @default.
- W4309009346 hasConceptScore W4309009346C105795698 @default.
- W4309009346 hasConceptScore W4309009346C119857082 @default.
- W4309009346 hasConceptScore W4309009346C139945424 @default.
- W4309009346 hasConceptScore W4309009346C159110408 @default.
- W4309009346 hasConceptScore W4309009346C21569690 @default.
- W4309009346 hasConceptScore W4309009346C27415008 @default.
- W4309009346 hasConceptScore W4309009346C2778671685 @default.
- W4309009346 hasConceptScore W4309009346C2780662849 @default.
- W4309009346 hasConceptScore W4309009346C3020395413 @default.
- W4309009346 hasConceptScore W4309009346C31903555 @default.
- W4309009346 hasConceptScore W4309009346C33923547 @default.
- W4309009346 hasConceptScore W4309009346C41008148 @default.
- W4309009346 hasConceptScore W4309009346C557471498 @default.
- W4309009346 hasConceptScore W4309009346C71924100 @default.
- W4309009346 hasConceptScore W4309009346C86803240 @default.
- W4309009346 hasConceptScore W4309009346C99454951 @default.
- W4309009346 hasIssue "22" @default.