Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309012912> ?p ?o ?g. }
- W4309012912 endingPage "8760" @default.
- W4309012912 startingPage "8760" @default.
- W4309012912 abstract "Bearing fault diagnosis is important to ensure safe operation and reduce loss for most rotating machinery. In recent years, deep learning (DL) has been widely used for bearing fault diagnosis and has achieved excellent results. Continuous wavelet transform (CWT), which can convert original sensor data to time-frequency images, is often used to preprocess vibration data for the DL model. However, in time-frequency images, some frequency components may be important, and some may be unimportant for DL models for fault diagnosis. So, how to choose a frequency range of important frequency components is needed for CWT. In this paper, an Integrated Gradient-based continuous wavelet transform (IG-CWT) method is proposed to address this issue. Through IG-CWT, the important frequency components and the component frequency range can be detected and used for data preprocessing. To verify our method, experiments are conducted on four famous bearing datasets using 3 DL models, separately, and compared with CWT, and the results are compared with the original CWT. The comparisons show that the proposed IG-CWT can achieve higher fault diagnosis accuracy." @default.
- W4309012912 created "2022-11-20" @default.
- W4309012912 creator A5017886286 @default.
- W4309012912 creator A5052128105 @default.
- W4309012912 creator A5055207211 @default.
- W4309012912 creator A5072179563 @default.
- W4309012912 date "2022-11-12" @default.
- W4309012912 modified "2023-09-26" @default.
- W4309012912 title "Integrated Gradient-Based Continuous Wavelet Transform for Bearing Fault Diagnosis" @default.
- W4309012912 cites W2295107390 @default.
- W4309012912 cites W2604465547 @default.
- W4309012912 cites W2768753204 @default.
- W4309012912 cites W2887782657 @default.
- W4309012912 cites W2888337213 @default.
- W4309012912 cites W2893747136 @default.
- W4309012912 cites W2944474187 @default.
- W4309012912 cites W2956467153 @default.
- W4309012912 cites W2956927451 @default.
- W4309012912 cites W2981731882 @default.
- W4309012912 cites W2982680516 @default.
- W4309012912 cites W2995279030 @default.
- W4309012912 cites W2997428643 @default.
- W4309012912 cites W3007606372 @default.
- W4309012912 cites W3009370740 @default.
- W4309012912 cites W3018957240 @default.
- W4309012912 cites W3022604663 @default.
- W4309012912 cites W3036681111 @default.
- W4309012912 cites W3049546269 @default.
- W4309012912 cites W3102564565 @default.
- W4309012912 cites W3117515147 @default.
- W4309012912 cites W3117698002 @default.
- W4309012912 cites W3121787084 @default.
- W4309012912 cites W3122126208 @default.
- W4309012912 cites W3125758801 @default.
- W4309012912 cites W3135079779 @default.
- W4309012912 cites W3158768656 @default.
- W4309012912 cites W3172381285 @default.
- W4309012912 cites W3174422331 @default.
- W4309012912 cites W3192807145 @default.
- W4309012912 cites W3201873505 @default.
- W4309012912 cites W3202104064 @default.
- W4309012912 cites W3211117857 @default.
- W4309012912 cites W4206770926 @default.
- W4309012912 cites W4234372187 @default.
- W4309012912 cites W4285119789 @default.
- W4309012912 cites W4299165763 @default.
- W4309012912 doi "https://doi.org/10.3390/s22228760" @default.
- W4309012912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36433357" @default.
- W4309012912 hasPublicationYear "2022" @default.
- W4309012912 type Work @default.
- W4309012912 citedByCount "2" @default.
- W4309012912 countsByYear W43090129122023 @default.
- W4309012912 crossrefType "journal-article" @default.
- W4309012912 hasAuthorship W4309012912A5017886286 @default.
- W4309012912 hasAuthorship W4309012912A5052128105 @default.
- W4309012912 hasAuthorship W4309012912A5055207211 @default.
- W4309012912 hasAuthorship W4309012912A5072179563 @default.
- W4309012912 hasBestOaLocation W43090129121 @default.
- W4309012912 hasConcept C10551718 @default.
- W4309012912 hasConcept C106131492 @default.
- W4309012912 hasConcept C127313418 @default.
- W4309012912 hasConcept C127413603 @default.
- W4309012912 hasConcept C142433447 @default.
- W4309012912 hasConcept C146978453 @default.
- W4309012912 hasConcept C153180895 @default.
- W4309012912 hasConcept C154945302 @default.
- W4309012912 hasConcept C165205528 @default.
- W4309012912 hasConcept C175551986 @default.
- W4309012912 hasConcept C196216189 @default.
- W4309012912 hasConcept C199978012 @default.
- W4309012912 hasConcept C204323151 @default.
- W4309012912 hasConcept C31972630 @default.
- W4309012912 hasConcept C34736171 @default.
- W4309012912 hasConcept C41008148 @default.
- W4309012912 hasConcept C46286280 @default.
- W4309012912 hasConcept C47432892 @default.
- W4309012912 hasConcept C95722684 @default.
- W4309012912 hasConceptScore W4309012912C10551718 @default.
- W4309012912 hasConceptScore W4309012912C106131492 @default.
- W4309012912 hasConceptScore W4309012912C127313418 @default.
- W4309012912 hasConceptScore W4309012912C127413603 @default.
- W4309012912 hasConceptScore W4309012912C142433447 @default.
- W4309012912 hasConceptScore W4309012912C146978453 @default.
- W4309012912 hasConceptScore W4309012912C153180895 @default.
- W4309012912 hasConceptScore W4309012912C154945302 @default.
- W4309012912 hasConceptScore W4309012912C165205528 @default.
- W4309012912 hasConceptScore W4309012912C175551986 @default.
- W4309012912 hasConceptScore W4309012912C196216189 @default.
- W4309012912 hasConceptScore W4309012912C199978012 @default.
- W4309012912 hasConceptScore W4309012912C204323151 @default.
- W4309012912 hasConceptScore W4309012912C31972630 @default.
- W4309012912 hasConceptScore W4309012912C34736171 @default.
- W4309012912 hasConceptScore W4309012912C41008148 @default.
- W4309012912 hasConceptScore W4309012912C46286280 @default.
- W4309012912 hasConceptScore W4309012912C47432892 @default.
- W4309012912 hasConceptScore W4309012912C95722684 @default.
- W4309012912 hasFunder F4320321001 @default.
- W4309012912 hasIssue "22" @default.