Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309013263> ?p ?o ?g. }
- W4309013263 endingPage "3718" @default.
- W4309013263 startingPage "3718" @default.
- W4309013263 abstract "The increased use of urban technologies in smart cities brings new challenges and issues. Cyber security has become increasingly important as many critical components of information and communication systems depend on it, including various applications and civic infrastructures that use data-driven technologies and computer networks. Intrusion detection systems monitor computer networks for malicious activity. Signature-based intrusion detection systems compare the network traffic pattern to a set of known attack signatures and cannot identify unknown attacks. Anomaly-based intrusion detection systems monitor network traffic to detect changes in network behavior and identify unknown attacks. The biggest obstacle to anomaly detection is building a statistical normality model, which is difficult because a large amount of data is required to estimate the model. Supervised machine learning-based binary classifiers are excellent tools for classifying data as normal or abnormal. Feature selection and feature scaling are performed to eliminate redundant and irrelevant data. Of the 24 features of the Kyoto 2006+ dataset, nine numerical features are considered essential for model training. Min-Max normalization in the range [0,1] and [−1,1], Z-score standardization, and new hyperbolic tangent normalization are used for scaling. A hyperbolic tangent normalization is based on the Levenberg-Marquardt damping strategy and linearization of the hyperbolic tangent function with a narrow slope gradient around zero. Due to proven classification ability, in this study we used a feedforward neural network, decision tree, support vector machine, k-nearest neighbor, and weighted k-nearest neighbor models Overall accuracy decreased by less than 0.1 per cent, while processing time was reduced by more than a two-fold reduction. The results show a clear benefit of the TH scaling regarding processing time. Regardless of how accurate the classifiers are, their decisions can sometimes differ. Our study describes a conflicting decision detector based on an XOR operation performed on the outputs of two classifiers, the fastest feedforward neural network, and the more accurate but slower weighted k-nearest neighbor model. The results show that up to 6% of different decisions are detected." @default.
- W4309013263 created "2022-11-20" @default.
- W4309013263 creator A5048991827 @default.
- W4309013263 creator A5081436241 @default.
- W4309013263 creator A5085587232 @default.
- W4309013263 creator A5086315941 @default.
- W4309013263 date "2022-11-13" @default.
- W4309013263 modified "2023-10-01" @default.
- W4309013263 title "Cybersecurity in Smart Cities: Detection of Opposing Decisions on Anomalies in the Computer Network Behavior" @default.
- W4309013263 cites W1746799182 @default.
- W4309013263 cites W1966809779 @default.
- W4309013263 cites W1976262362 @default.
- W4309013263 cites W2060542593 @default.
- W4309013263 cites W2087070363 @default.
- W4309013263 cites W2101109743 @default.
- W4309013263 cites W2101267652 @default.
- W4309013263 cites W2105471083 @default.
- W4309013263 cites W2126185804 @default.
- W4309013263 cites W2147494151 @default.
- W4309013263 cites W2155837945 @default.
- W4309013263 cites W2256578114 @default.
- W4309013263 cites W2267339884 @default.
- W4309013263 cites W2901312569 @default.
- W4309013263 cites W292222157 @default.
- W4309013263 cites W2924689635 @default.
- W4309013263 cites W2954541385 @default.
- W4309013263 cites W2956531592 @default.
- W4309013263 cites W2958285686 @default.
- W4309013263 cites W3034300825 @default.
- W4309013263 cites W3036517673 @default.
- W4309013263 cites W3047409962 @default.
- W4309013263 cites W3080337533 @default.
- W4309013263 cites W3100857292 @default.
- W4309013263 cites W3118992623 @default.
- W4309013263 cites W3120058312 @default.
- W4309013263 cites W3145098975 @default.
- W4309013263 cites W3169753169 @default.
- W4309013263 cites W3173630589 @default.
- W4309013263 cites W3174098199 @default.
- W4309013263 cites W3188367166 @default.
- W4309013263 cites W3193280971 @default.
- W4309013263 cites W3196382900 @default.
- W4309013263 cites W3204227193 @default.
- W4309013263 cites W3206666897 @default.
- W4309013263 cites W3217529127 @default.
- W4309013263 cites W3217648337 @default.
- W4309013263 cites W4200188712 @default.
- W4309013263 cites W4206180902 @default.
- W4309013263 cites W4213147148 @default.
- W4309013263 cites W4220832941 @default.
- W4309013263 cites W4247145325 @default.
- W4309013263 cites W4285215147 @default.
- W4309013263 cites W4285264774 @default.
- W4309013263 doi "https://doi.org/10.3390/electronics11223718" @default.
- W4309013263 hasPublicationYear "2022" @default.
- W4309013263 type Work @default.
- W4309013263 citedByCount "1" @default.
- W4309013263 countsByYear W43090132632023 @default.
- W4309013263 crossrefType "journal-article" @default.
- W4309013263 hasAuthorship W4309013263A5048991827 @default.
- W4309013263 hasAuthorship W4309013263A5081436241 @default.
- W4309013263 hasAuthorship W4309013263A5085587232 @default.
- W4309013263 hasAuthorship W4309013263A5086315941 @default.
- W4309013263 hasBestOaLocation W43090132631 @default.
- W4309013263 hasConcept C113238511 @default.
- W4309013263 hasConcept C119857082 @default.
- W4309013263 hasConcept C12267149 @default.
- W4309013263 hasConcept C124101348 @default.
- W4309013263 hasConcept C136886441 @default.
- W4309013263 hasConcept C144024400 @default.
- W4309013263 hasConcept C153180895 @default.
- W4309013263 hasConcept C154945302 @default.
- W4309013263 hasConcept C19165224 @default.
- W4309013263 hasConcept C35525427 @default.
- W4309013263 hasConcept C41008148 @default.
- W4309013263 hasConcept C739882 @default.
- W4309013263 hasConceptScore W4309013263C113238511 @default.
- W4309013263 hasConceptScore W4309013263C119857082 @default.
- W4309013263 hasConceptScore W4309013263C12267149 @default.
- W4309013263 hasConceptScore W4309013263C124101348 @default.
- W4309013263 hasConceptScore W4309013263C136886441 @default.
- W4309013263 hasConceptScore W4309013263C144024400 @default.
- W4309013263 hasConceptScore W4309013263C153180895 @default.
- W4309013263 hasConceptScore W4309013263C154945302 @default.
- W4309013263 hasConceptScore W4309013263C19165224 @default.
- W4309013263 hasConceptScore W4309013263C35525427 @default.
- W4309013263 hasConceptScore W4309013263C41008148 @default.
- W4309013263 hasConceptScore W4309013263C739882 @default.
- W4309013263 hasIssue "22" @default.
- W4309013263 hasLocation W43090132631 @default.
- W4309013263 hasOpenAccess W4309013263 @default.
- W4309013263 hasPrimaryLocation W43090132631 @default.
- W4309013263 hasRelatedWork W2041399278 @default.
- W4309013263 hasRelatedWork W2136184105 @default.
- W4309013263 hasRelatedWork W2336974148 @default.
- W4309013263 hasRelatedWork W2355809385 @default.
- W4309013263 hasRelatedWork W2363105058 @default.
- W4309013263 hasRelatedWork W2771633073 @default.