Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309022865> ?p ?o ?g. }
- W4309022865 endingPage "329" @default.
- W4309022865 startingPage "318" @default.
- W4309022865 abstract "• A hybrid kinetic modeling framework is proposed for Fischer-Tropsch synthesis. • Anderson-Shulz-Flory (ASF) distribution is modeled by piecewise linear approximation. • Sparse regression is used to identify optimal model for chain growth probability. Fischer-Tropsch synthesis (FTS) receives an extensive attention as it can be used to produce various chemicals and fuels, such as linear alpha olefin, gasoline and jet fuel, in a sustainable way. While a kinetic model can help optimize the operating conditions of FTS reactors for a specific product portfolio, such a model is very challenging to develop due to the large number of species and reactions involved in FTS. To this end, in this work, we propose a hybrid modeling framework to efficiently build a kinetic model for FTS. Specifically, experiments are conducted using a Fe-Cu-K-SiO 2 catalyst with the following operating variables: pressure, temperature, H 2 /CO ratio in syngas, and gas hourly space velocity. Then, using the experimental data, the effectiveness of the proposed framework is illustrated, which consists of three key components. The overall LHHW model is first used to predict the overall consumption rates of CO and H 2 as well as the production rates of CO 2 and overall hydrocarbons. Then, a convex piecewise linear fitting problem is formulated for the ASF distribution model, which can identify the break points (where the value of chain growth probability α changes) with global optimality. Finally, surrogate modeling is performed to obtain the models describing the changes in the optimal α values with respect to the operating conditions. The final model showed the overall relative error of 9.98% for CO, CO 2 and H 2 , and 15.8% for hydrocarbons, which are comparable to the values reported in the literature." @default.
- W4309022865 created "2022-11-21" @default.
- W4309022865 creator A5007226887 @default.
- W4309022865 creator A5033749320 @default.
- W4309022865 creator A5044574588 @default.
- W4309022865 creator A5059351725 @default.
- W4309022865 creator A5081909035 @default.
- W4309022865 creator A5089059117 @default.
- W4309022865 date "2023-02-01" @default.
- W4309022865 modified "2023-09-29" @default.
- W4309022865 title "A hybrid modeling framework for efficient development of Fischer-Tropsch kinetic models" @default.
- W4309022865 cites W1143666955 @default.
- W4309022865 cites W1608655978 @default.
- W4309022865 cites W1956605311 @default.
- W4309022865 cites W1963818392 @default.
- W4309022865 cites W1970067832 @default.
- W4309022865 cites W1974301493 @default.
- W4309022865 cites W1990468084 @default.
- W4309022865 cites W1992954275 @default.
- W4309022865 cites W1996020380 @default.
- W4309022865 cites W2002320149 @default.
- W4309022865 cites W2013993934 @default.
- W4309022865 cites W2041457212 @default.
- W4309022865 cites W2045252232 @default.
- W4309022865 cites W2051066060 @default.
- W4309022865 cites W2052902356 @default.
- W4309022865 cites W2054082587 @default.
- W4309022865 cites W2060048121 @default.
- W4309022865 cites W2063034523 @default.
- W4309022865 cites W2075670607 @default.
- W4309022865 cites W2077072801 @default.
- W4309022865 cites W2079845224 @default.
- W4309022865 cites W2083381081 @default.
- W4309022865 cites W2085807663 @default.
- W4309022865 cites W2094816433 @default.
- W4309022865 cites W2105280352 @default.
- W4309022865 cites W2110856693 @default.
- W4309022865 cites W2157509251 @default.
- W4309022865 cites W2203714058 @default.
- W4309022865 cites W2238816748 @default.
- W4309022865 cites W2239232218 @default.
- W4309022865 cites W2467018176 @default.
- W4309022865 cites W2488571508 @default.
- W4309022865 cites W2489195757 @default.
- W4309022865 cites W2490866528 @default.
- W4309022865 cites W2491715227 @default.
- W4309022865 cites W2618269067 @default.
- W4309022865 cites W2619202328 @default.
- W4309022865 cites W2755377015 @default.
- W4309022865 cites W2766569887 @default.
- W4309022865 cites W2790242775 @default.
- W4309022865 cites W2890322428 @default.
- W4309022865 cites W2893109119 @default.
- W4309022865 cites W2902339933 @default.
- W4309022865 cites W2902967926 @default.
- W4309022865 cites W2944120742 @default.
- W4309022865 cites W2962685604 @default.
- W4309022865 cites W2963113802 @default.
- W4309022865 cites W2967010218 @default.
- W4309022865 cites W2969318693 @default.
- W4309022865 cites W2996481748 @default.
- W4309022865 cites W2997703026 @default.
- W4309022865 cites W2997982138 @default.
- W4309022865 cites W2998840182 @default.
- W4309022865 cites W3007650467 @default.
- W4309022865 cites W3022329270 @default.
- W4309022865 cites W3024816801 @default.
- W4309022865 cites W3042959663 @default.
- W4309022865 cites W3045405812 @default.
- W4309022865 cites W3048702801 @default.
- W4309022865 cites W3087472809 @default.
- W4309022865 cites W3093629715 @default.
- W4309022865 cites W3113010729 @default.
- W4309022865 cites W3153435642 @default.
- W4309022865 cites W3203154825 @default.
- W4309022865 cites W3205848213 @default.
- W4309022865 cites W4206093410 @default.
- W4309022865 cites W4210568167 @default.
- W4309022865 cites W4221035375 @default.
- W4309022865 cites W4234698323 @default.
- W4309022865 cites W4280649690 @default.
- W4309022865 cites W4308039276 @default.
- W4309022865 doi "https://doi.org/10.1016/j.jiec.2022.11.016" @default.
- W4309022865 hasPublicationYear "2023" @default.
- W4309022865 type Work @default.
- W4309022865 citedByCount "2" @default.
- W4309022865 countsByYear W43090228652023 @default.
- W4309022865 crossrefType "journal-article" @default.
- W4309022865 hasAuthorship W4309022865A5007226887 @default.
- W4309022865 hasAuthorship W4309022865A5033749320 @default.
- W4309022865 hasAuthorship W4309022865A5044574588 @default.
- W4309022865 hasAuthorship W4309022865A5059351725 @default.
- W4309022865 hasAuthorship W4309022865A5081909035 @default.
- W4309022865 hasAuthorship W4309022865A5089059117 @default.
- W4309022865 hasConcept C118792377 @default.
- W4309022865 hasConcept C127413603 @default.
- W4309022865 hasConcept C161790260 @default.
- W4309022865 hasConcept C178790620 @default.