Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309030577> ?p ?o ?g. }
- W4309030577 endingPage "21488" @default.
- W4309030577 startingPage "21478" @default.
- W4309030577 abstract "Machine olfactory perception (MOP) is a new type of intelligent perception technology that senses and describes odors. The difference between MOP and machine olfaction is that MOP describes odors by using some semantic labels. One of the challenges in realizing MOP is an appropriate multilabel classifier from the high-dimensional sensor responses. Here, we propose a novel aroma-type (AT) oriented MOP method, which is an MOP method of multiple AT. Wherein, the method designed an intelligent perception of multiple ATs based on a convolutional neural network (IPMAT-CNN), in which an olfactory information-shared mechanism was introduced to enhance the feature extraction of the network. In addition, by analyzing the molecular correlation between multiple ATs, a matrix addition method was designed in IPMAT-CNN to strengthen the information on adjacent ATs. These designs effectively improved the accuracy of model detection. At last, IPMAT-CNN successfully sensed and recognized seven ATs of 38 monomer flavors. The effectiveness of IPMAT-CNN was evaluated by four baseline models [classifier chain based on random forest classifier (CC-RF), label powerset based on random forest classifier (LP-RF), multilabel decision tree (ML-DT), and multilabel <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${k}$ </tex-math></inline-formula> -nearest neighbor (ML-kNN)]. The results showed that the IPMAT-CNN had the best performance with a 0.0636 hamming loss, a 93.65% accuracy, and a 0.8149 mean average precision (mAP) value for classifying the seven ATs. It reveals that the IPMAT-CNN had a decent prediction performance and can be used as an effective reference method for the ATs classification." @default.
- W4309030577 created "2022-11-21" @default.
- W4309030577 creator A5006865706 @default.
- W4309030577 creator A5010854091 @default.
- W4309030577 creator A5011044088 @default.
- W4309030577 creator A5059704385 @default.
- W4309030577 creator A5070272446 @default.
- W4309030577 creator A5085028455 @default.
- W4309030577 date "2022-11-15" @default.
- W4309030577 modified "2023-09-27" @default.
- W4309030577 title "Intelligent Perception of Multiaroma Types Based on Machine Olfaction" @default.
- W4309030577 cites W1045349118 @default.
- W4309030577 cites W1598126944 @default.
- W4309030577 cites W2015017245 @default.
- W4309030577 cites W2017286584 @default.
- W4309030577 cites W2017447380 @default.
- W4309030577 cites W2028112942 @default.
- W4309030577 cites W2037554731 @default.
- W4309030577 cites W2055102111 @default.
- W4309030577 cites W2059700429 @default.
- W4309030577 cites W2092952693 @default.
- W4309030577 cites W2114315281 @default.
- W4309030577 cites W2152939188 @default.
- W4309030577 cites W2486737114 @default.
- W4309030577 cites W2514087538 @default.
- W4309030577 cites W2522701101 @default.
- W4309030577 cites W2589330732 @default.
- W4309030577 cites W2594570598 @default.
- W4309030577 cites W2729085143 @default.
- W4309030577 cites W2734687659 @default.
- W4309030577 cites W2745412643 @default.
- W4309030577 cites W2761485135 @default.
- W4309030577 cites W2787397243 @default.
- W4309030577 cites W2810128553 @default.
- W4309030577 cites W2884444414 @default.
- W4309030577 cites W2893850995 @default.
- W4309030577 cites W2912950582 @default.
- W4309030577 cites W2932399282 @default.
- W4309030577 cites W2964185734 @default.
- W4309030577 cites W2965428057 @default.
- W4309030577 cites W2970325348 @default.
- W4309030577 cites W3015646381 @default.
- W4309030577 cites W3023334899 @default.
- W4309030577 cites W3023338710 @default.
- W4309030577 cites W3028383737 @default.
- W4309030577 cites W3045338271 @default.
- W4309030577 cites W3083505941 @default.
- W4309030577 cites W3083993516 @default.
- W4309030577 cites W3092204459 @default.
- W4309030577 cites W3110664776 @default.
- W4309030577 cites W3119843083 @default.
- W4309030577 cites W3123878341 @default.
- W4309030577 cites W3156845437 @default.
- W4309030577 cites W3166897988 @default.
- W4309030577 cites W3190247062 @default.
- W4309030577 cites W3200270605 @default.
- W4309030577 cites W3207773326 @default.
- W4309030577 cites W4224230816 @default.
- W4309030577 doi "https://doi.org/10.1109/jsen.2022.3211438" @default.
- W4309030577 hasPublicationYear "2022" @default.
- W4309030577 type Work @default.
- W4309030577 citedByCount "0" @default.
- W4309030577 crossrefType "journal-article" @default.
- W4309030577 hasAuthorship W4309030577A5006865706 @default.
- W4309030577 hasAuthorship W4309030577A5010854091 @default.
- W4309030577 hasAuthorship W4309030577A5011044088 @default.
- W4309030577 hasAuthorship W4309030577A5059704385 @default.
- W4309030577 hasAuthorship W4309030577A5070272446 @default.
- W4309030577 hasAuthorship W4309030577A5085028455 @default.
- W4309030577 hasConcept C11413529 @default.
- W4309030577 hasConcept C119857082 @default.
- W4309030577 hasConcept C153180895 @default.
- W4309030577 hasConcept C154945302 @default.
- W4309030577 hasConcept C169258074 @default.
- W4309030577 hasConcept C169760540 @default.
- W4309030577 hasConcept C193319292 @default.
- W4309030577 hasConcept C26760741 @default.
- W4309030577 hasConcept C41008148 @default.
- W4309030577 hasConcept C52622490 @default.
- W4309030577 hasConcept C81363708 @default.
- W4309030577 hasConcept C86803240 @default.
- W4309030577 hasConcept C95623464 @default.
- W4309030577 hasConceptScore W4309030577C11413529 @default.
- W4309030577 hasConceptScore W4309030577C119857082 @default.
- W4309030577 hasConceptScore W4309030577C153180895 @default.
- W4309030577 hasConceptScore W4309030577C154945302 @default.
- W4309030577 hasConceptScore W4309030577C169258074 @default.
- W4309030577 hasConceptScore W4309030577C169760540 @default.
- W4309030577 hasConceptScore W4309030577C193319292 @default.
- W4309030577 hasConceptScore W4309030577C26760741 @default.
- W4309030577 hasConceptScore W4309030577C41008148 @default.
- W4309030577 hasConceptScore W4309030577C52622490 @default.
- W4309030577 hasConceptScore W4309030577C81363708 @default.
- W4309030577 hasConceptScore W4309030577C86803240 @default.
- W4309030577 hasConceptScore W4309030577C95623464 @default.
- W4309030577 hasFunder F4320321001 @default.
- W4309030577 hasFunder F4320324202 @default.
- W4309030577 hasIssue "22" @default.