Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309032743> ?p ?o ?g. }
- W4309032743 abstract "Abstract Partitioning a water distribution network into several district metered areas is beneficial for its management. Partitioning a network according to its node features and connections remains a challenge. A recent study has realized water network partitioning based on node features or pipe connections individually. This study proposes an unsupervised clustering method for nodes based on a graph neural network, which uses graph attention technology to update node features based on the connections and a neural network to cluster nodes. The similarity between nodes located in each area and the balance of the total water demand between areas are optimized, and the importance of the boundary pipes is calculated to determine the installation position of flowmeters and valves. Three water distribution networks with different structures and sizes are used to verify the proposed model. The results show that the average location differences (LocDiffs) within the areas of the three networks completed by partitioning are 0.12, 0.07, and 0.06, and the total demand differences (DemDiffs) between areas are 0.13, 0.27, and 0.29, respectively. The LocDiff and DemDiff of the proposed method decreased by 6% and 55%, respectively, when compared to the traditional clustering method. Additionally, the proposed method for calculating the importance of boundaries provides an objective basis for boundary closure. When the same number of boundaries are closed, the comprehensive impact of the proposed method on the pipe network decreases by 17.1%. The proposed method can be used in practical applications because it ensures a highly reliable and interpretive water distribution network partitioning method." @default.
- W4309032743 created "2022-11-21" @default.
- W4309032743 creator A5000157191 @default.
- W4309032743 creator A5024336390 @default.
- W4309032743 creator A5033487036 @default.
- W4309032743 creator A5036309421 @default.
- W4309032743 creator A5037953109 @default.
- W4309032743 creator A5051562321 @default.
- W4309032743 creator A5057979719 @default.
- W4309032743 creator A5080733133 @default.
- W4309032743 date "2022-11-15" @default.
- W4309032743 modified "2023-10-18" @default.
- W4309032743 title "Graph attention neural network for water network partitioning" @default.
- W4309032743 cites W123103321 @default.
- W4309032743 cites W1242295151 @default.
- W4309032743 cites W1246501824 @default.
- W4309032743 cites W1971417023 @default.
- W4309032743 cites W1978023915 @default.
- W4309032743 cites W1992166786 @default.
- W4309032743 cites W1997989006 @default.
- W4309032743 cites W2000677075 @default.
- W4309032743 cites W2002523493 @default.
- W4309032743 cites W2006018751 @default.
- W4309032743 cites W2048523204 @default.
- W4309032743 cites W2070398722 @default.
- W4309032743 cites W2070759473 @default.
- W4309032743 cites W2073606819 @default.
- W4309032743 cites W2084459706 @default.
- W4309032743 cites W2086916198 @default.
- W4309032743 cites W2109398160 @default.
- W4309032743 cites W2166699581 @default.
- W4309032743 cites W2255259968 @default.
- W4309032743 cites W2263689052 @default.
- W4309032743 cites W2314361278 @default.
- W4309032743 cites W2324866179 @default.
- W4309032743 cites W2346571297 @default.
- W4309032743 cites W2554394845 @default.
- W4309032743 cites W2736059865 @default.
- W4309032743 cites W2742369705 @default.
- W4309032743 cites W2782444084 @default.
- W4309032743 cites W2791402254 @default.
- W4309032743 cites W2796336244 @default.
- W4309032743 cites W2799306942 @default.
- W4309032743 cites W2913751434 @default.
- W4309032743 cites W2950258955 @default.
- W4309032743 cites W2979298350 @default.
- W4309032743 cites W2999688381 @default.
- W4309032743 cites W3015559679 @default.
- W4309032743 cites W3134644740 @default.
- W4309032743 cites W3160965531 @default.
- W4309032743 cites W3171080874 @default.
- W4309032743 cites W3171139884 @default.
- W4309032743 cites W3175501901 @default.
- W4309032743 cites W3191794496 @default.
- W4309032743 cites W4213415292 @default.
- W4309032743 cites W4220671802 @default.
- W4309032743 cites W4281788440 @default.
- W4309032743 cites W99652317 @default.
- W4309032743 doi "https://doi.org/10.1007/s13201-022-01791-4" @default.
- W4309032743 hasPublicationYear "2022" @default.
- W4309032743 type Work @default.
- W4309032743 citedByCount "1" @default.
- W4309032743 countsByYear W43090327432023 @default.
- W4309032743 crossrefType "journal-article" @default.
- W4309032743 hasAuthorship W4309032743A5000157191 @default.
- W4309032743 hasAuthorship W4309032743A5024336390 @default.
- W4309032743 hasAuthorship W4309032743A5033487036 @default.
- W4309032743 hasAuthorship W4309032743A5036309421 @default.
- W4309032743 hasAuthorship W4309032743A5037953109 @default.
- W4309032743 hasAuthorship W4309032743A5051562321 @default.
- W4309032743 hasAuthorship W4309032743A5057979719 @default.
- W4309032743 hasAuthorship W4309032743A5080733133 @default.
- W4309032743 hasBestOaLocation W43090327431 @default.
- W4309032743 hasConcept C103278499 @default.
- W4309032743 hasConcept C114614502 @default.
- W4309032743 hasConcept C115961682 @default.
- W4309032743 hasConcept C124101348 @default.
- W4309032743 hasConcept C127413603 @default.
- W4309032743 hasConcept C132525143 @default.
- W4309032743 hasConcept C154945302 @default.
- W4309032743 hasConcept C22047676 @default.
- W4309032743 hasConcept C33923547 @default.
- W4309032743 hasConcept C41008148 @default.
- W4309032743 hasConcept C48903430 @default.
- W4309032743 hasConcept C50644808 @default.
- W4309032743 hasConcept C62611344 @default.
- W4309032743 hasConcept C66938386 @default.
- W4309032743 hasConcept C73555534 @default.
- W4309032743 hasConcept C80444323 @default.
- W4309032743 hasConcept C88230418 @default.
- W4309032743 hasConceptScore W4309032743C103278499 @default.
- W4309032743 hasConceptScore W4309032743C114614502 @default.
- W4309032743 hasConceptScore W4309032743C115961682 @default.
- W4309032743 hasConceptScore W4309032743C124101348 @default.
- W4309032743 hasConceptScore W4309032743C127413603 @default.
- W4309032743 hasConceptScore W4309032743C132525143 @default.
- W4309032743 hasConceptScore W4309032743C154945302 @default.
- W4309032743 hasConceptScore W4309032743C22047676 @default.
- W4309032743 hasConceptScore W4309032743C33923547 @default.
- W4309032743 hasConceptScore W4309032743C41008148 @default.