Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309040010> ?p ?o ?g. }
- W4309040010 abstract "To construct the deep learning system (DLS) based on enhanced computed tomography (CT) images for preoperative prediction of staging and human epidermal growth factor receptor 2 (HER2) status in gastric cancer patients.The raw enhanced CT image dataset consisted of CT images of 389 patients in the retrospective cohort, The Cancer Imaging Archive (TCIA) cohort, and the prospective cohort. DLS was developed by transfer learning for tumor detection, staging, and HER2 status prediction. The pre-trained Yolov5, EfficientNet, EfficientNetV2, Vision Transformer (VIT), and Swin Transformer (SWT) were studied. The tumor detection and staging dataset consisted of 4860 enhanced CT images and annotated tumor bounding boxes. The HER2 state prediction dataset consisted of 38900 enhanced CT images.The DetectionNet based on Yolov5 realized tumor detection and staging and achieved a mean Average Precision (IoU=0.5) (mAP_0.5) of 0.909 in the external validation cohort. The VIT-based PredictionNet performed optimally in HER2 status prediction with the area under the receiver operating characteristics curve (AUC) of 0.9721 and 0.9995 in the TCIA cohort and prospective cohort, respectively. DLS included DetectionNet and PredictionNet had shown excellent performance in CT image interpretation.This study developed the enhanced CT-based DLS to preoperatively predict the stage and HER2 status of gastric cancer patients, which will help in choosing the appropriate treatment to improve the survival of gastric cancer patients." @default.
- W4309040010 created "2022-11-21" @default.
- W4309040010 creator A5045773186 @default.
- W4309040010 creator A5051581366 @default.
- W4309040010 creator A5087766208 @default.
- W4309040010 date "2022-11-14" @default.
- W4309040010 modified "2023-10-10" @default.
- W4309040010 title "Accurate preoperative staging and HER2 status prediction of gastric cancer by the deep learning system based on enhanced computed tomography" @default.
- W4309040010 cites W1261214144 @default.
- W4309040010 cites W1863044491 @default.
- W4309040010 cites W1892105223 @default.
- W4309040010 cites W2023976609 @default.
- W4309040010 cites W2059755429 @default.
- W4309040010 cites W2097780199 @default.
- W4309040010 cites W2103004421 @default.
- W4309040010 cites W2114489245 @default.
- W4309040010 cites W2117539524 @default.
- W4309040010 cites W2153505392 @default.
- W4309040010 cites W2161081152 @default.
- W4309040010 cites W2177870565 @default.
- W4309040010 cites W2287231805 @default.
- W4309040010 cites W2292909024 @default.
- W4309040010 cites W2293371443 @default.
- W4309040010 cites W2346343836 @default.
- W4309040010 cites W2520896738 @default.
- W4309040010 cites W2557411750 @default.
- W4309040010 cites W2559582770 @default.
- W4309040010 cites W2588993302 @default.
- W4309040010 cites W2589029310 @default.
- W4309040010 cites W2589644515 @default.
- W4309040010 cites W2594180593 @default.
- W4309040010 cites W2610958160 @default.
- W4309040010 cites W2617251978 @default.
- W4309040010 cites W2628914529 @default.
- W4309040010 cites W2738975713 @default.
- W4309040010 cites W2760946358 @default.
- W4309040010 cites W2763355946 @default.
- W4309040010 cites W2775790492 @default.
- W4309040010 cites W2777345632 @default.
- W4309040010 cites W2782896508 @default.
- W4309040010 cites W2788633781 @default.
- W4309040010 cites W2790066236 @default.
- W4309040010 cites W2801607989 @default.
- W4309040010 cites W2806986802 @default.
- W4309040010 cites W2886955753 @default.
- W4309040010 cites W2896760986 @default.
- W4309040010 cites W2903150666 @default.
- W4309040010 cites W2908201961 @default.
- W4309040010 cites W2919115771 @default.
- W4309040010 cites W2932988231 @default.
- W4309040010 cites W2940487144 @default.
- W4309040010 cites W2963589681 @default.
- W4309040010 cites W2969617342 @default.
- W4309040010 cites W2971032337 @default.
- W4309040010 cites W2971437889 @default.
- W4309040010 cites W2995276890 @default.
- W4309040010 cites W2998508940 @default.
- W4309040010 cites W3004053956 @default.
- W4309040010 cites W3011671455 @default.
- W4309040010 cites W3016305104 @default.
- W4309040010 cites W3017170546 @default.
- W4309040010 cites W3032933153 @default.
- W4309040010 cites W3034192395 @default.
- W4309040010 cites W3042541362 @default.
- W4309040010 cites W3046091280 @default.
- W4309040010 cites W3081006013 @default.
- W4309040010 cites W3084796803 @default.
- W4309040010 cites W3085688439 @default.
- W4309040010 cites W3096609285 @default.
- W4309040010 cites W3098108773 @default.
- W4309040010 cites W3102564565 @default.
- W4309040010 cites W3119045898 @default.
- W4309040010 cites W3128646645 @default.
- W4309040010 cites W3135216387 @default.
- W4309040010 cites W3137249732 @default.
- W4309040010 cites W3138516171 @default.
- W4309040010 cites W3162293114 @default.
- W4309040010 cites W3186382323 @default.
- W4309040010 cites W3207278866 @default.
- W4309040010 cites W3213316637 @default.
- W4309040010 cites W4200595129 @default.
- W4309040010 cites W4211007657 @default.
- W4309040010 cites W4237624056 @default.
- W4309040010 doi "https://doi.org/10.3389/fonc.2022.950185" @default.
- W4309040010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36452488" @default.
- W4309040010 hasPublicationYear "2022" @default.
- W4309040010 type Work @default.
- W4309040010 citedByCount "1" @default.
- W4309040010 crossrefType "journal-article" @default.
- W4309040010 hasAuthorship W4309040010A5045773186 @default.
- W4309040010 hasAuthorship W4309040010A5051581366 @default.
- W4309040010 hasAuthorship W4309040010A5087766208 @default.
- W4309040010 hasBestOaLocation W43090400101 @default.
- W4309040010 hasConcept C121608353 @default.
- W4309040010 hasConcept C126322002 @default.
- W4309040010 hasConcept C126838900 @default.
- W4309040010 hasConcept C154945302 @default.
- W4309040010 hasConcept C188816634 @default.
- W4309040010 hasConcept C2989005 @default.
- W4309040010 hasConcept C41008148 @default.