Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309042602> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4309042602 abstract "This paper develops an approach to inference in a linear regression model when the number of potential explanatory variables is larger than the sample size. The approach treats each regression coefficient in turn as the interest parameter, the remaining coefficients being nuisance parameters, and seeks an optimal interest-respecting transformation, inducing sparsity on the relevant blocks of the notional Fisher information matrix. The induced sparsity is exploited through a marginal least squares analysis for each variable, as in a factorial experiment, thereby avoiding penalization. One parameterization of the problem is found to be particularly convenient, both computationally and mathematically. In particular, it permits an analytic solution to the optimal transformation problem, facilitating theoretical analysis and comparison to other work. In contrast to regularized regression such as the lasso and its extensions, neither adjustment for selection nor rescaling of the explanatory variables is needed, ensuring the physical interpretation of regression coefficients is retained. Recommended usage is within a broader set of inferential statements, so as to reflect uncertainty over the model as well as over the parameters. The considerations involved in extending the work to other regression models are briefly discussed." @default.
- W4309042602 created "2022-11-21" @default.
- W4309042602 creator A5084676897 @default.
- W4309042602 creator A5088603739 @default.
- W4309042602 date "2021-06-22" @default.
- W4309042602 modified "2023-09-25" @default.
- W4309042602 title "Inference in High-dimensional Linear Regression" @default.
- W4309042602 doi "https://doi.org/10.48550/arxiv.2106.12001" @default.
- W4309042602 hasPublicationYear "2021" @default.
- W4309042602 type Work @default.
- W4309042602 citedByCount "0" @default.
- W4309042602 crossrefType "posted-content" @default.
- W4309042602 hasAuthorship W4309042602A5084676897 @default.
- W4309042602 hasAuthorship W4309042602A5088603739 @default.
- W4309042602 hasBestOaLocation W43090426021 @default.
- W4309042602 hasConcept C104317684 @default.
- W4309042602 hasConcept C105795698 @default.
- W4309042602 hasConcept C120068334 @default.
- W4309042602 hasConcept C136764020 @default.
- W4309042602 hasConcept C149782125 @default.
- W4309042602 hasConcept C152877465 @default.
- W4309042602 hasConcept C154945302 @default.
- W4309042602 hasConcept C162948026 @default.
- W4309042602 hasConcept C163175372 @default.
- W4309042602 hasConcept C185592680 @default.
- W4309042602 hasConcept C203233044 @default.
- W4309042602 hasConcept C204241405 @default.
- W4309042602 hasConcept C2776214188 @default.
- W4309042602 hasConcept C32224588 @default.
- W4309042602 hasConcept C33923547 @default.
- W4309042602 hasConcept C37616216 @default.
- W4309042602 hasConcept C41008148 @default.
- W4309042602 hasConcept C48921125 @default.
- W4309042602 hasConcept C55493867 @default.
- W4309042602 hasConcept C57381214 @default.
- W4309042602 hasConcept C83546350 @default.
- W4309042602 hasConcept C90157343 @default.
- W4309042602 hasConceptScore W4309042602C104317684 @default.
- W4309042602 hasConceptScore W4309042602C105795698 @default.
- W4309042602 hasConceptScore W4309042602C120068334 @default.
- W4309042602 hasConceptScore W4309042602C136764020 @default.
- W4309042602 hasConceptScore W4309042602C149782125 @default.
- W4309042602 hasConceptScore W4309042602C152877465 @default.
- W4309042602 hasConceptScore W4309042602C154945302 @default.
- W4309042602 hasConceptScore W4309042602C162948026 @default.
- W4309042602 hasConceptScore W4309042602C163175372 @default.
- W4309042602 hasConceptScore W4309042602C185592680 @default.
- W4309042602 hasConceptScore W4309042602C203233044 @default.
- W4309042602 hasConceptScore W4309042602C204241405 @default.
- W4309042602 hasConceptScore W4309042602C2776214188 @default.
- W4309042602 hasConceptScore W4309042602C32224588 @default.
- W4309042602 hasConceptScore W4309042602C33923547 @default.
- W4309042602 hasConceptScore W4309042602C37616216 @default.
- W4309042602 hasConceptScore W4309042602C41008148 @default.
- W4309042602 hasConceptScore W4309042602C48921125 @default.
- W4309042602 hasConceptScore W4309042602C55493867 @default.
- W4309042602 hasConceptScore W4309042602C57381214 @default.
- W4309042602 hasConceptScore W4309042602C83546350 @default.
- W4309042602 hasConceptScore W4309042602C90157343 @default.
- W4309042602 hasLocation W43090426021 @default.
- W4309042602 hasLocation W43090426022 @default.
- W4309042602 hasOpenAccess W4309042602 @default.
- W4309042602 hasPrimaryLocation W43090426021 @default.
- W4309042602 hasRelatedWork W2364467608 @default.
- W4309042602 hasRelatedWork W2886532972 @default.
- W4309042602 hasRelatedWork W2918472618 @default.
- W4309042602 hasRelatedWork W3021785231 @default.
- W4309042602 hasRelatedWork W3118299338 @default.
- W4309042602 hasRelatedWork W4210660526 @default.
- W4309042602 hasRelatedWork W4225727896 @default.
- W4309042602 hasRelatedWork W4226066678 @default.
- W4309042602 hasRelatedWork W4233599973 @default.
- W4309042602 hasRelatedWork W641278561 @default.
- W4309042602 isParatext "false" @default.
- W4309042602 isRetracted "false" @default.
- W4309042602 workType "article" @default.